According to David Hume, a deductive demonstration for inductive inference is not possible, because inductive inference is not deductive; and an inductive demonstration for inductive inference is not possible either, because such a demonstration is circular. Thus, on his view, there is no way of justifying inductive inference. Ever since Hume raised this problem of induction, a fair number of philosophers have tried to solve it. Nevertheless there is still no solution which is plausible enough to receive wide endorsement. According to Wilfrid Sellars, we cannot justify inductive inference by any theoretical reasoning; we can vindicate it only by a certain sort of practical reasoning. In this paper, I defend this Sellarsian proposal by developing and explaining it.
Korean students are taught area formulas of parallelogram and triangle by inductive reasoning in current curriculum. Inductive thinking is a crucial goal in mathematics education. There are, however, many problems to understand area formula inductively. In this study, those problems are illuminated theoretically and investigated in the class of 5th graders. One way to teach area formulas is suggested by means of process of problem solving with transforming figures.
The aim of this paper is to clarify the difference between the concept of deduction-induction and Aristotle's concept of syllogismos-epagoge. First, Aristotle does not use the expression 'invalid syllogismos'. But a valid deduction is distinguished from a invalid deduction in modern logic. Second, from Aristotle's point of view syllogismos is paralleled by epagoge. Because syllogismos is equivalent to epagoge in logical form. But a disturbing lack of parallelism exists between deduction and induction by which the standards for establishing inductive conclusions are more demanding than those for deductive ones. Third, instructors in introductory logic courses ordinarily stress the need to evaluate arguments first in terms of the strength of the conclusion relative to the premises. Accordingly, students may be told to assume that premises are true. But Aristotle does not assume that premises are true. A syllogismos start from the conceptually true premise and a epagoge start from the empirically true premise.
Journal of the Korean Society for Library and Information Science
/
v.28
/
pp.267-286
/
1995
불리언 논리에 기초한 현재 정보검색 시스템은 두 가지 본질적인 문제점 - 1)부정확하거나 불완전한 질의 표현과 2)일관성 없는 색인 - 이 있다. 많은 연구자들이 신경망조직(neural network) 이 정보경색에 있어서 불완전한 질의표현 문제를 해결할 수 있다고 주장해 온 반면 일관성 없는 문제는 아직 해결하지 못한 채 남아있다. 본고에서는 이러한 두 가지 문제점을 해결하기 위해 신경망 조직과 귀납학습이 소개되고 있다. 또한 이 논문에서는 신경망 조직이 어떻게 귀납학습과 통합해서 효율적인 정보 검색시스템에 응용될 수 있는지를 보여주고 있다.
This study begins from posing a problem, 'formal introduction of mathematical induction in school mathematics'. Most students may learn the mathematical induction at the level of instrumental understanding without meaningful understanding about its meaning and structure. To improve this didactical situation, we research on the historical progress of mathematical induction from implicit use in greek mathematics to formalization by Pascal and Fermat. And we identify various types of thinking included in the developmental process: recursion, regression, analytic thinking, synthetic thinking. In special, we focused on the role of regression in mathematical induction, and then from that role we induce the implications for teaching mathematical induction in school mathematics.
대학수학에서 수학적귀납법의 원리를 소개하고 풍부한 예를 통해 이해를 돕는다. 특별히 교양수학을 수강하는 1학년 학생 수준에 맞게 매스매티카 프로그램을 이용하여 구체적인 예를 갖고 한단계 한단계 접근하여 수학적귀납법의 증명을 연습할 기회를 준다. 증명을 단계적으로 하는 것을 연습하여 학생들은 논리적인 사고능력을 개발하고 새로운 명제를 발견할 수 있는 기회를 맞보게 한다. 물론, 증명 연습은 1학년 신입생에게는 쉽지 않으나 여러 명제에 대해 연습을 하는 것은 수학적, 논리적 사고 능력을 개발하고 증명문제에 대한 인식을 바꾸는데 매우 중요한 역할을 할 것이다.
수학 학습의 목표를 수학적 사고력의 신장이라는 측면에서 보았을 때 이를 위하여 문제에 대한 다양한 해법을 찾는 활동은 중요하다. 문제에 대한 다양한 접근은 문제해결의 전략을 학습시키고 사고의 유연성을 길러줄 수 있는 방법이 된다. 문제에 대한 다양한 해법을 찾는 과정에서 이미 알고 있는 지식이 어떻게 응용되는지를 알게 된다. 특히 기하 문제에 대한 다양한 접근은 문제해결의 전략을 학습시킬 수 있는 좋은 예가 된다. 본고에서는 문제해결을 통한 수학적 일반성을 발견하기 위한 방법으로서 문제에 대한 다양한 해법을 연역과 귀납에 의하여 일반화하는 과정을 탐색하고자 한다. 특히 수학 문제에 대한 다양한 해법을 찾는 것은 문제해결 전략으로서 뿐만 아니라 창의적 사고의 신장 측면에서 시사점을 던져준다.
중세과학자가 크롬비(A.C Crombie)에 따르면 중세는 과학과 기술, 그리고 과학의 방법에서 모두 진전을 보였다. 먼저 합리적 설명의 개념, 특히 수학의 이용의 회복은 어떻게 이론을 세우고 검증 또는 반증하는 가의 문제를 제기했다. 이 문제는 스콜라적인 귀납이론과 실험적 방법에 의해 해결되었다. 그 예는 13, 14세기의 광학과 자기학에서 볼 수 있다.
In the present study, we analyze the four participating 9th grade students' mathematical reasoning processes in their dragging activities while solving open-ended geometry problems in terms of abduction, induction and deduction. The results of the analysis are as follows. First, the students utilized 'abduction' to adopt their hypotheses, 'induction' to generalize them by examining various cases and 'deduction' to provide warrants for the hypotheses. Secondly, in the abduction process, 'wandering dragging' and 'guided dragging' seemed to help the students formulate their hypotheses, and in the induction process, 'dragging test' was mainly used to confirm the hypotheses. Despite of the emerging mathematical reasoning via their dragging activities, several difficulties were identified in their solving processes such as misunderstanding shapes as fixed figures, not easily recognizing the concept of dependency or path, not smoothly proceeding from probabilistic reasoning to deduction, and trapping into circular logic.
Journal of Elementary Mathematics Education in Korea
/
v.15
no.3
/
pp.641-654
/
2011
In order to grow students' rational and creative problem-solving ability which is one of the primary goals in mathematics education. students' proper understanding of mathematical concepts, principles, and rules must be backed up as its foundational basis. For the relevant teaching strategies. National Mathematics Curriculum advises that students should be allowed to discover and justify the concepts, principles, and rules by themselves not only through the concrete hands-on activities but also through inquiry-based activities based on the learning topics experienced from the diverse phenomena in their surroundings. Hereby, this paper, firstly, looks into both the meaning and the inductive reasoning process of mathematical principles and rules, secondly, suggest "learning through discovery teaching method" for the proper teaching of the mathematical principles and rules recommended by the National Curriculum, and, thirdly, examines the possible discovery-led teaching strategies using inductive methods with the related matters to be attended to.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.