• Title/Summary/Keyword: 궤환 시스템

Search Result 464, Processing Time 0.025 seconds

Generation of n Precision Magnetic Filed Using Electromagnet and NMR Magnetometer (전자석과 핵자기공명 자장측정기를 이용한 정밀자장의 발생)

  • Kim, Young-Gyun;Park, Po-Gyu;Park, Jeong-Kwon
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.137-142
    • /
    • 2002
  • A precision magnetic field was generated by the NMR magnetometer and electromagnet system. The current and field feedback systems are used to control of magnetic field in the electromagnet using computer. Stability of magnetic field according to results that compare field and current feedback, current method is better than 2 times. The stability of magnetic field with current feedback improved 10 times compared with no feedback. This system is used for the calibration of magnetometers and the testing related to magnetic fields.

Output-Feedback Input-Output Linearizing Controller for Nonlinear System Using Backward-Difference State Estimator (후방차분 상태 추정기를 이용한 비선형 계통의 입출력 궤환 선형화 제어기)

  • Kim, Seong-Hwan;Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.72-78
    • /
    • 2005
  • This paper describes the design of a robust output-feedback controller for a single-input single-output nonlinear dynamical system with a full relative degree. While all the previous research works on the output-feedback control are based on dynamic observers, a new state estimator which uses the past values of the measurable system output is proposed. We name it backward-difference state estimator since the derivatives of the output are estimated simply by backward difference of the present and past values of the output. The disturbance generated due to the error between the estimated and real state variables is compensated using an additional robustifying control law whose gain is tuned adaptively. Overall control system guarantees that the tracking error is asymptotically convergent and that all signals involved are uniformly bounded. Theoretical results are illustrated through a simulation example of inverted pendulum.

  • PDF

Integral Error State Feedback VSC for a DC Servo Position Control System (직류서보 위치제어 시스템을 위한 편차적분 상태궤환 가변구조제어기)

  • 박영진;이기상;홍순찬
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.3
    • /
    • pp.88-95
    • /
    • 1994
  • A scheme of IESFVSC(Integral Error State Feedback Variable Structure Controller) is proposed for a DC servo position control system with the disturbances which do not satisfy the matching condition. The proposed control system is composed of servo compensator and state feedback VSC. The servo compensator enhances the robustness of the control system against various types of disturbance, and makes effective tracking possible without using error dynamics. The IESFVSC is applied to the practical design of a robust DC servo control system and the control performances are verified through theoretical analyses and simulations.

  • PDF

Detection algorithm for DAA using Decision Directed method in MB-OFDM (MB-OFDM에서 충돌회피를 위한 결정궤환방식의 간섭신호 검출 기법)

  • Oh, Woo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.315-321
    • /
    • 2011
  • Since the MB-OFDM(Multi-Band Orthogonal Frequency Division Multiplexing) is an ultra wideband communication system operated on ISM(Industrial, Scientific and Medical) band, DAA(Detect-And-Avoid) is required for co-existence with the other communication service. In this paper we propose the new detection algorithm based on decision-feedback, which shows faster convergence time and less complexity than previous works. The proposed algorithm detects interference above -20dB in AWGN(Additive White Gaussian Noise) and LOS(Line-Of-Sight) channel, and close to AWGN in non-LOS channel under appropriate channel clipping.

State-Feedback Backstepping Controller for Uncertain Pure-Feedback Nonlinear Systems Using Switching Differentiator (불확실한 순궤환 비선형 계통에 대한 스위칭 미분기를 이용한 상태궤환 백스테핑 제어기)

  • Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.716-721
    • /
    • 2019
  • A novel switching differentiator-based backstepping controller for uncertain pure-feedback nonlinear systems is proposed. Using asymptotically convergent switching differentiator, time-derivatives of the virtual controls are directly estimated in every backstepping design steps. As a result, the control law has an extremely simple form and asymptotical stability of the tracking error is guaranteed regardless of parametric or unstructured uncertainties and unmatched disturbances in the considered system. It is required no universal approximators such as neural networks or fuzzy logic systems that are adaptively tuned online to cope with system uncertainties. Simulation results show the simplicity and performance of the proposed controller.

압력 신호의 포화를 갖는 시스템의 출력 궤환 제어기 설계 : 시간영역 해석

  • 손영창;김승우;지원호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.23-23
    • /
    • 1999
  • 일반적인 제어대상 시스템을 모델링하여 제어기를 설계할 경우 시스템을 제어하는 액츄에이터의 saturation 현상을 무시하고 설계하는 경우가 자주 있다. 만일 시스템이 SISO이며, 충분히 안정하고 동적 특성이 빠른 경우에는 saturation 무시가 주는 영향이 크게 나타나지 않지만, 만일 시스템이 MIMO이며 비선형일 경우 비선형 요소인 입력 saturation에 의하여 시스템의 특성이 변형되고 크게는 불안정화 된다.

  • PDF

Equalizer Mode Selection Method for Improving Bit Error Performance of Underwater Acoustic Communication Systems (수중음향통신 시스템의 비트 오류 성능 향상을 위한 등화 모드 선택 방법)

  • Kim, Hyeon-Su;Seo, Jong-Pil;Kim, Jae-Young;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • The linear and decision-feedback equalization can mitigate time-varying intersymbol interference (ISI) caused by time-varying multipath propagation for underwater acoustic channels. The perfect elimination of interference components, however, is difficult using the linear equalization and the decision feedback equalizer has an error propagation problem. To overcome these shortcomings, this paper proposes an equalizer mode selection method using training sequences. The proposed method selects an equalization mode corresponding to the signal-to-noise ratio (SNR). If the SNR is low, the proposed system operates the linear equalizer for preventing the error propagation and if the SNR is high, the decision feedback equalizer for eliminating the residual ISI. Therefore, the proposed method can improve the error performance compared to the conventional equalizers. The computer simulation shows the proposed method improves the bit error performance using practical underwater channels responses acquired from the sea experiment.

Linearization of the Multi-input Discrete-time Nonlinear Systems (다 입력 이산 비선형 시스템의 선형화)

  • Kim, Jae-Hyun;Roh, Dong-Hwi;Park, Soon-Hyoung;Kim, Yong-Min;Lee, Hong-Gi
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.30-39
    • /
    • 2000
  • In order to linearize the nonlinear systems, two different methods(i.e. state coordinate change and feedback) are usually used. In this paper, we consider the multi-input discrete-time nonlinear systems and obtain the necessary and sufficient conditions for both the linearization problem by state-coordinate change and the feedback linearization problem. The way of finding state coordinate change and state feedback which linearize the given system is also given in the proof.

  • PDF

Robust speed control of DC Motor using Neural network-PID hybrid controller (신경회로망-PID복합형제어기를 이용한 직류 전동기의 강인한 속도제어)

  • Yoo, In-Ho;Oh, Hoon;Cho, Hyun-Sub;Lee, Sung-Soo;Kim, Yong-Wook;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-89
    • /
    • 2004
  • Robust control for feedback control system is needed according to the highest precision of industrial automation. However, when a neural network feedback control system has an effect of disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, hybrid control method of neural network controller and PID controller is presented. A neural network controller is operated as a main controller, a PID controller is a assistant controller which operates only when some undesirable phenomena occur, e.q., when the error hit the boundary of constraint set. The robust control function of neural network-PID hybrid controller is demonstrated by speed control of Motor.

The Control of Inverted Pendulum System Using Approximated Nonlinear Feedback Linearization (근사 비선형 궤환 선형화를 이용한 도립 진자 계통의 제어)

  • 이종용;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.372-384
    • /
    • 1993
  • The inverted pendulum system has interesting and challenging problems related to robotics and rocket attitude control view of both control theory and applications. Generally approximately linearized plant models are employed to control the system. In this paper a recently developed control theory based on differentiable manifold theory is used to control the inverted pendulum system which is typically nonlinear. First, the nonlinear model is transformed into the approximate feedback linearized system by nonlinear state feedback. Secondly, the linear controller is designed using the pole-placement method for the approximate feedback linearized plant model, the output of which are finally inverse-transformed to yield the control input to the actual system of the inverted pendulum. The proposed method is evaluated by the computer simulation to compare with the 3rd order linearization model.

  • PDF