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Output-Feedback Input-Output Linearizing
Controller for Nonlinear System Using

Backward-Difference State Estimator
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Abstract
This paper describes the design of a robust output-feedback controller for a single-input single-output
nonlinear dynamical system with a full relative degree. While all the previous research works on the
output-feedback control are based on dynamic observers, a new state estimator which uses the past values
of the measurable system output is proposed. We name it backward-difference state estimator since the
derivatives of the output are estimated simply by backward difference of the present and past values of the
output. The disturbance generated due to the error between the estimated and real state variables is
compensated using an additional robustifying control law whose gain is tuned adaptively. Overall control
system guarantees that the tracking error is asymptotically convergent and that all signals involved are

uniformly bounded. Theoretical results are illustrated through a simulation example of inverted pendulum.
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| . Introduction feedback has received great attention [1]-[5].
Especially, the output—feedback control of nonlinear

Nonlinear control has emerged as a research area system has been an extensively researched issue

of rapidly increasing activity. Especially, the theory
of explicitly linearizing the input-output response of
nonlinear systems to linear systems using the state $2 1120054 37 31H,
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since, in many practical systems, the full state
variables are not available.

The output-feedback control schemes of nonlinear
systems have been based on various dynamic state
observers. In [4], [5], a dynamic observer for the
which the

output-feedback form is firstly built and then an

systems can be transformed into

input-output linearizing controller are designed
based on the observer. The adaptive versions of
these results are also proposed using filtered
transformation or error augmentation method [6]-[8].
However, the method is restricted on the systems
which can be transformed to output-feedback form
where the system nonlinearities are the functions of
system output only. Another form of observer which
is known as high-gain observer [9]-[11] is widely
adopted in the output-feedback scheme since its
dynamics are linear and independent upon system
dynamics. This high—-gain observer 1is relatively
simpler in its structure than proposed in [6]-[8].
However, due to a peaking phenomenon, additional
saturating scheme is to be employed.

In this paper, a new state estimator is proposed f
or a single-input single-output (SISO) feedback line
arizable nonlinear system with full relative degree.
The proposed observer uses the present and past va
lues of the measurable system output to estimate th
e time derivatives of the system output using back
ward difference approximation. We call this observer
as backward difference state estimator (BDSE). The
disturbances generated due to the error between the
estimated and real state variables are compensated f
or by an additional sliding mode-like robustifying co
ntrol law whose gain is tuned adaptively. Overall ou
tput-feedback control system guarantees that the tra
cking error is asymptotically convergent and that all
signals involved are uniformly bounded. Theoretical
results are illustrated through a simulation example

of inverted pendulum system.
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Il. Controller Design and Stability
Analysis

In this section, we first set up control objective,
and then show how to design an input-output
linearizing controller based on the BDSE to achieve

the objectives.

2.1 Problem formulation
Consider the jth-order nonlinear system of the
form

" f(:r:i'a'“755(“71))+g($a9}>“‘>w(nil))u

(1)

where f and g are continuous functions, =R

:I"(
y =z

and yeR are the input and output of the system,

respectively, and

=[x x -« V]TeR”
the system. It is assumed that only the system

x=[x 2,7

is the state vector of

output yis measurable. For (1) to be controllable, it

is required that g( X):I':O for all xeR:. Since

g(X) is continuous, without loss of generality, we

xER The
control objective is to force the output $y(t)$ to

assume that g(X) is positive for all

track a given bounded reference signal Y d( l‘)’ under

the constraint that all the state variables must be
stabilized.

2.2 State Estimator
All  the the

output-feedback controller are based on the dynamic

previous research results on
observer of the state-variables. In this paper, we
propose a static state observer which estimates the
state variables using the past values of the output.
The followings are from the finite difference

theory [12]. From the definition of the derivative of

the output
. . ) —nif-d
= i 2 TEE TG 9
1() =l =0 @
where d> (), we can imply, that for any >0
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there exists a (15) such that Y d<{ &

() - z1(t) —21(t — d)

P <€

(3)
which means that at arbitrary time ¢ the N =%
can be approximated up to arbitrary accuracy by its
values at two subsequent points. Thus, we define

% (=00 ()—x (t—d)/d Similarly, to
compute the second derivative,
. L Bt —31(6—4d)
= lim—2r_-- =
1 (f) o d
) hmg[hmxl(t) ~i(t-d)
d—0d [d=0 d
T l’l(t—d) —:L'ﬂt—?d)}
i d )

which implies that for any >0 there exists a

&5) such that Vd< )

ael(t)—‘&2(t)‘f;(t‘d)‘<e (5)
Thus, we define () =(x, () —x(t=d))/d -

By induction, we propose the following BDSE:

%= [p1(t) Bo(t)- - 2 ()" (6)
where
5y = z1(t) —Zl(t—d)
By = £o(t) — 22 (t—d)
Zi:n — C/’-;:71«71(75) - flnfl( - d) . (7)

We can see that for any gand time instant j there

exists a § such that the following inequality is

satisfied
[x(t) - %(t)] < eld), 0<d<d ®

Assumption 1. The time interval $d$ is sufficiently
small so that the following inequality holds

g(x(t)) < 29(x(t)) (9)

for all >

2.3 Controller Design

A control law is proposed as

:g(lﬁ)( FE P + 1o+ 8)  (10)

where =[ k,, .. kl] T is determined such that the

polynomial h(s):S"+an"—1+...+kl is
. ~ —~ . . T

Hurwitz, e=x—x. x;~=[y; ¥z yggn )] ,

and Bis a robustness term which compensates for
the disturbances due to the error between the state

variables and their estimates.
Let e=y,—y and e=X,X - Substituting (10)

into (1) can yield the following error dynamics.

oW = ym)T_y()
= -ke-(flx)-f@& ))
—(g(x) —g®))u - (11)
or
& = detb[K(e-8 - (1) - /(X)
~(glx) ~ 9 u - 8. (12)
where
0 1 0 0 0
0 ] 1 0 0
A= b=
_kn _kn—l _kn—Q -k 1
Since A is a stable matrix, there exist the
positive-definite symmetric matrixes P and Q
satisfying
ATP+ PA=—Q. (13)

For the stability analysis, we need the following
inequality

|A(x) — h(X)| <lpe, b= f,g

where lh h= f g are Lipschitz constants. The proof
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of (14) is straightforward from the smoothness of
the functions f and gand (8).
Since, in general, the constants gis unknown and

it is hard to calculate the Lipschitz constants [f and



[ even if the functions f and g are known, we
g

adopt an adaptive scheme for the lumped constant
defined as

_ max{|k|e + Iye, lge}

g = (15

where ) is the constant satisfying

nga,wzu (16)

g(%)
It is obvious that there exists the constant p in

(16) from Assumption 1. We denote the estimate of

gﬁ" as ;Zin what follows.

2.4 Stability Analysis

The following is the main theorem of this paper.

Theorem 1. Consider the affine nonlinear system
(1) and the control input (11) with the robustifying

control term as

1 = graxgnie’ b 117]

where s=1+ |ud| and

The update law for ,92’ is determined as

i =% @ Pl (R

where 7> 0 is the adaptation rate at designers’

deposal. Then, the tracking error e is UAS and the
;2, is bounded.

progf. Consider the Lyapunov function

1 l = A =g
I _:Ir".l";-- —r (30

where Zb: /‘7,_ ¢*. Differentiating

solution of (13), we obtain

174 along the
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Using (17), (19) and the following inequality

. flx) — glx| .
1—A< 14 . | £2}
glx)

we can further describe the inequality (24) as

1 4
Vo= —seged

&' Pl EYE ]
- 1= h;
el Phii1 — A)s +

v
I =X
sl Qe — [ PBI(1 = Aa + — i
L
e 2

!l.- Lt i

Egs. (20) and (23) guarantee that e and 2], are

bounded since V(If) is nonincreasing. Because all

the variables in the right-hand side of (12) are

bounded, -e( t) is also bounded. Integrating both

sides of (23) and after some manipulations, we have
3 . p
el df < = O S T )
JII|r| ' = Aainl ()
Since the right side of (24) is bounded, | e(f)|ElQ'
Using Barbalat’s lemma [13], we have lim|e|=().
0

This completes the proof.

Remark 1. In many applications, the sgn( . ) in
(17) is replaced by a saturation function of the form
¢ ) i

. n{e’ ) if [e7PB| =,

sat (o Fh) | / i b

SR ol F

(25

el Ph/s, il

T
or a smooth function tah(iBb) where Es> 0

S
is a small design constant in order to remedy the

control chattering.
[ll. Simulation Example
procedure  and

To  illustrate the  control
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performance we apply the proposed robust adaptive
controller to control the inverted pendulum to track
a sinewave trajectory. The dynamic equations of the
system are given by [2].

. 3 sinday
U T
i o E i [ 26
1} — memn gy
where x= @ represents the angle of the
pendulum, represents the angular velocity,

X2
G:98m/ s2 acceleration due to gravity, m, is
the mass of cart, m is the mass of pole, / is the

half length of pole, and u is the applied force

(control). We choose mczlkg’ m=01kg and
I=0.5m in the following simulations. Clearly, (26)

is of the same form of (1), thus our control scheme

can be implemented on this system. We also choose

I

30

the reference signal y (f)= sin( ) in the

following simulations.

The design parameters are specified as follows.

Let  p=92 py=] (so that @4 p stpk, is
stable), and Q=1 then we have the Lyapunov

equation (14) and obtain

1.5 1
#= i LG

which is positive-definite with A i =().2929 We

|
] )

also choose 720. 1 and the initial values as

x(0)=[—0.05 017, «0)=0-

For a comparison purpose, two simulations are
d=(.1sec and
d=0.01sec The results of the first simulation

performed with the values of

with d=().]sec are illustrated in Fig.1-2 and with
d=0.01s¢c in Fig. 3-4. From the results, it can
be inferred that the the

desired output well by the proposed controller.

system output tracks

Comparing the two controllers also reveals that

tracking performance is slightly degraded in the

former case, ie., with the bigger value of d The

smaller the value of d is, the better the tracking

performance is, which is expected.
IV. Conclusions

This paper describes the design of a robust
output—feedback controller for a SISO nonlinear
dynamical system with a full relative degree. The
proposed state observer called BDSE estimates the
unmeasurable states by backward difference of the
present and past values of the output. No restrictive
in [6]-[11] used. The

disturbance generated due to the error between the

dynamic observer as is
estimated and real state variables is compensated
using the additional sliding—mode control law whose
gain is tuned adaptively. With the proposed BDSE
and conventional input-output linearizing controller,
stability analysis for the closed-loop system has
been performed. Overall control system guarantees
that the tracking error is asymptotically convergent
and that all signals involved are uniformly bounded.

Fig. 1. Simulation results with d=0(.1sec. (a) v
(line), o (dotted line) and , (dashed line).

(b) % (line), .yd (dotted line), ;2 (dashed
line).
a9 1. g=().1sec.?l B2 ZoHdd A3t (a)
(A A), yd(ﬁﬁ) and o (#4). (b) %

(AA), 3, (B4, (A,
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Fig. 2. Simulation results with 7—() ]sec. (a)
control input. (b) trajectory of
a8 2. g=().]1sec.?! 52 mofdd A3 (a)
AoldE (b) 2,9] AA.

Fig. 3. Simulation results with d=0.01s¢ec (a)
(line), Vy (dotted line) and , (dashed line).

(b) % (line), :Vd (dotted line), ;@ (dashed
line).

a9 3 g=(.0]1sec-Y AFe Eodd A (a)
(A A), Yy (F4) and p (HA). () % (A

), Y, A, 5 @A),

L=t

3¢

7

e

Fig. 4. Simulation results with d=0.01sec. (a) control
input. (b) trajectory of ;Z

a8 4 g=(.015ec-2 EFel 2o
1= (b) ;2,9I H A,

g 23 (a) Mo
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