• Title/Summary/Keyword: 굵은 순환골재

Search Result 130, Processing Time 0.026 seconds

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.87-91
    • /
    • 2009
  • Recycling demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help solve the growing waste disposal crisis and the problem of depleted natural aggregates. The purpose of this study is to investigate chloride migration of recycled aggregate concrete containing pozzolanic materials by chloride migration coefficient. The specimens were made with recycled coarse aggregate as various replacement ratio(10, 30, 50%) and metakaolin, blast furnace slag, fly ash is replaced for recycled concrete with mixing ratio 20%. The major results are as follows. 1) Compressive strength of recycled aggregate concrete containing pozzolanic materials increase as curing age and chloride migration decrease. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag, metakaolin shows the similar or lower value than plain concrete at all ages.

  • PDF

Effect of Replacement of Recycled Coarse Aggregate with 13mm on Engineering Properties of the Concrete (13mm 크기 순환굵은골재 치환이 콘크리트의 공학적 특성에 미치는 영향)

  • Kang, Byeog-Hoe;Zhao, Yang;Park, Jae Yong;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.137-138
    • /
    • 2014
  • The aim of this research is suggesting the method of obtaining well-graded aggregates for concrete replacing the recycled aggregate which size range is from 5 to 13 mm to currently used gap-graded natural aggregates which size range is only 13 to 25 mm. according to the tests results, the workability of concrete was improved with replacing the aggregates of 5 to 13 mm of size range because of compensating gap-grading. Furthermore, there was an improvement in compressive strength when the aggregates of 5 to 13 mm of size range was replaced because obtained well-graded aggregates contributed on increasing adhesiveness and filling internal pore system. Comparing replacing recycled aggregate to natural aggregate, there was no significant difference on the performances.

  • PDF

Effect of the Use of Recycled Coarse Aggregate with the size of 5~13mm on the Fundamental Properties of the Concrete (5~13 mm 순환 굵은 골재 혼합 사용이 콘크리트의 기초적 특성에 미치는 영향)

  • Kang, Byeong-Hoe;Jung, Sang-Woon;Zhao, Yang;Hwang, Jin-Guang;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.19-20
    • /
    • 2013
  • Consider about aggregate's price, coarse aggregates from 13 to 25mm were widely used in ready mixed concrete company. But if only use 13 to 25mm aggregates in the concrete, gap grading problem would be occurred. When recycled aggregates from 13 to 25mm was used, continuous grading would increase the durability and strength for the concrete, meanwhile the construction waste materials would also be reused. In this paper, 5-13mm recycled aggregates was utilized, to analyse the fundamental properties for concrete, strength has been tested to evaluate the quality and reusing effect of the recycled materials.

  • PDF

Mechanical and Drying Shrinkage of Concrete Replaced with Recycled Coarse Aggregate with Less than 13mm in Size (13mm이하 순환 굵은골재 치환에 따른 콘크리트의 역학적 특성 및 건조수축)

  • Lee, Sun-Jae;Kim, Sang-Sup;Park, Young-Jun;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.63-64
    • /
    • 2015
  • This study has analyzed mechanical and dry shrinkage properties according to the recycled coarse aggregate by nominal strength actually being widely used at the Remicon companies for the purpose of qualitative improvement of concrete, practical use and examination at various strengths. As a result, although the modulus of elasticity showed a tendency of getting decreased as the replacement ratio of recycled coarse aggregate has increased, the difference was insignificant while the compressive strength showed a tendency of about 3MPa increase in the recycled coarse aggregate replacement ratio of 30% compared to the ratio of 0%. In case of the dry shrinkage length variation ratio, the recycled coarse aggregate replacement ratio of 30% showed a tendency of about 20% shrinkage reduction compared to the ratio of 0%.

  • PDF

Effect of Recycled Aggregate Substitution to Zero-cement Concrete which uses Blast Furnace Slag Power (고로슬래그 미분말 사용 무 시멘트 콘크리트의 품질에 미치는 순환골재 치환율의 영향)

  • Feng, Hai-Dong;Cho, Man-Gi;Son, Ho-Jung;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.287-288
    • /
    • 2012
  • In this study, Analyzed the effect of the change in RFA and RCA substitution rate on the concrete containing BS bonding materials but no cement. The findings are as follows. First, the fresh concrete has less slump value and air contents as more RFA and RCA is used. In case of hardened concrete, as more RFA and RCA are used, the higher the compressive strength of concrete becomes. Especially, the compressive strength of concrete which used recycled aggregates only is found to be 2.2 times as high as that of concrete using natural fine and coarse aggregates only. But if the concrete is to be used as the structural concrete having the compressive strength of 13.8 MPa, the alkaline materials and some cement are required to be added.

  • PDF

Analysis the Use of Concrete Fine Aggregates of Coal Gasification Slag (콘크리트용 잔골재로서 석탄가스화 용융슬래그(CGS)의 활용성 분석)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • This study is analysis of the utilization as a concrete fine aggregate on CGS, a by-product of Integrated coal gasification combined cycle(IGCC). That is, in KS F 2527 "Concrete aggregate," properties of 1~12times to CGS were evaluated, focusing on quality items corresponding to natural aggregate sand(NS) and melted slag aggregate sand(MS). As a result, the distribution of grain shape, safety and expansion were all satisfied with KS standards by physical properties, but the quality was unstable at 7~12times of water absorption ratio and absolute dry density. The particle size distribution was unstable due to asymmetry distribution of coarse particles, and particles were too thick for 7~12times. The passing ratio of 0.08mm sieve was also out of the KS standard at part factor of 7~12times, but chloride content, clay contents, coal and lignite were all satisfactory. Meanwhile, chemical composition was satisfactory except for $SO_3$ in 1~6times, and content and amount of harmful substances were all within the specified value except for F in 7~12times. As a result of SEM analysis, the surface quality and porosity were 7~12times more than 1~6times, and it was the quality was degraded. Therefore, it is necessary to reduce the quality deviation by using separate measures in order to utilize it as concrete aggregate in the future, and if it is premixed with fine quality aggregate, it will contribute positively to solve aggregate supply shortage and utilize circulation resources.

Influence of Low-Quality Aggregate on Engineering Properties of Concrete (동일배합 조건에서 저품질 골재가 콘크리트의 공학적 특성에 미치는 영향)

  • Min, Kyeong-Chul;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • In this research, the influence of low-quality aggregate on engineering properties of concrete was experimentally evaluated. From a series of experiment, the results can be summarized as follow: first, the low-quality aggregate in concrete mixture caused up to 83% of decreased slump. For air content, low-quality aggregate increased air content of concrete mixture. Especially, when sea sand was used, because of the narrow gradation with small size, the air content was significantly increased. The compressive strength of concrete mixtures with low-quality aggregates were decreased up to 29% while some cases showed slightly increased compressive strength at early age. Additionally, the concrete mixture mixed with the exploded debris as a coarse aggregate showed approximately 5 to 20% of decreased compressive strength comparing with high-quality of manufacturing rock. In summary, because of the decreased workability of concrete mixture mixed with low-quality aggregates such as exploded debris, clay, and sea sand, it is concerned that worse quality of the ready mixed concrete, produced with the extra water to compensate the decreased workability.

Concrete physical properties with substitution ratio of recycled Coarse aggregate and recycled fine aggregate (순환굵은골재와 순환잔골재 치환율에 따른 콘크리트의 물리적 특성에 관한 연구)

  • Yoon, Seung-Joe;Seo, Soo-Yeon;Lee, Woo-Jin;Kim, Dae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.161-164
    • /
    • 2006
  • The main objective of this study was to evaluated the physical properties of concrete with substitution ratio of recycled fine aggregate and recycled coarse aggregate made of waste concrete. The replacement ratios of recycled coarse and fine aggregate decided 0%, 30%, 40% and 50% respectively to get the deregulate of floor space Index. The test result showed that compression strength of cylinder mold decrease with the substitution ratio increase but its strength of replaced recycled fine aggregate higher than OPC.

  • PDF

Properties of High Volume Blast Furnace Slag Concrete using Recycled Aggregate with Incineration Waste Ash (소각장애시의 치환에 따른 고로슬래그 미분말 다량치환 순환골재 콘크리트의 특성)

  • Han, Cheon-Goo;Lee, Hyang-Jae;Kim, Jun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • This study is the study desiring to solve the problem by utilizing the kinds of recycled resources considered to be troubled complementarily. Namely the reaction of potential hydraulicity of Blast Furnace Slag Powder (BS) shall be reacted with the alkali of Recycled Fine Aggregates Coarse Aggregate, it has been experimented to obtain the optimum value with the replacement ratio of incineration plant ash (WA) treated with the slaked lime as the experiment variable by solving the alkali of shortage with the Ordinary Portland Cement (OPC). As a result, the liquidity and the air volume are declined slightly as the replacement ratio of incineration plant ash WA increases, the mixture of incineration plant ash WA 1% has been analyzed to be the most suitable considering the viewpoint of effective handling of waste as the compression and the tensile strength showed the maximum value before and after 1% even though it was disadvantageous with the increase of chloride content.

Damping Characteristics of Polyurethane Composites Incorporating Recycled Rubber Particles and Aggregates (폐타이어 고무분말과 골재를 혼입한 폴리우레탄 복합재료의 감쇠 특성)

  • Park, Se Eon;Choi, Jeong-Il;Hwang, Jae-Seung;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.263-268
    • /
    • 2020
  • The purpose of this study is to investigate the damping properties of polyurethane composites incorporating waste tire rubber powder and preplaced coarse aggregates. Four types of polyurethane-based composites were manufactured, and longitudinal impact tests were performed. And vibration signals in the time domain and frequency domain were measured and values of damping ratio for each specimen were calculated. Test results showed that the damping ratios of polyurethane composites, in which the amount of polyurethane was reduced by 10.6% and 21.2% through incorporation of rubber particles, were 8.4% and 4.6% lower than that of pure polyurethane. The damping ratio of the polyurethane composite produced in a similar manner to the prepact concrete production method was found to be 22% lower than that of pure polyurethane, however, the amount of polyurethane was reduced by 50% and the stiffness was 25.7 times higher than that of pure polyurethane.