DOI QR코드

DOI QR Code

Damping Characteristics of Polyurethane Composites Incorporating Recycled Rubber Particles and Aggregates

폐타이어 고무분말과 골재를 혼입한 폴리우레탄 복합재료의 감쇠 특성

  • Received : 2020.06.15
  • Accepted : 2020.09.22
  • Published : 2020.09.30

Abstract

The purpose of this study is to investigate the damping properties of polyurethane composites incorporating waste tire rubber powder and preplaced coarse aggregates. Four types of polyurethane-based composites were manufactured, and longitudinal impact tests were performed. And vibration signals in the time domain and frequency domain were measured and values of damping ratio for each specimen were calculated. Test results showed that the damping ratios of polyurethane composites, in which the amount of polyurethane was reduced by 10.6% and 21.2% through incorporation of rubber particles, were 8.4% and 4.6% lower than that of pure polyurethane. The damping ratio of the polyurethane composite produced in a similar manner to the prepact concrete production method was found to be 22% lower than that of pure polyurethane, however, the amount of polyurethane was reduced by 50% and the stiffness was 25.7 times higher than that of pure polyurethane.

이 연구의 목적은 폐타이어 고무분말을 혼입한 폴리우레탄 복합재료와 굵은 골재를 사전채움하고 폴리우레탄을 주입한 폴리우레탄 복합재료의 감쇠성능을 평가하는 것이다. 이를 위하여 총 4 종류의 폴리우레탄 기반 복합재료를 제조하였고, 충격 가진 실험을 실시하였다. 실험을 통하여 시간 영역과 주파수 영역에서의 진동특성을 계측한 후 감쇠비를 계산하였다. 실험 결과, 고무분말을 혼입하여 폴리우레탄의 양이 각각 10.6%와 21.2% 줄어든 실험체들의 감쇠비는 순수한 폴리우레탄 실험체에 비하여 각각 8.4%와 4.6% 낮은 것으로 나타났다. 프리팩트 콘크리트 제조 방법과 유사한 방법으로 제조한 폴리우레탄 복합재료의 감쇠비는 순수 폴리우레탄에 비하여 22% 낮은 것으로 나타났지만 폴리우레탄 혼입량은 50% 감소하였으며, 강성은 25.7배 높은 것으로 나타났다.

Keywords

References

  1. Azevedo, F., Pacheco-Torgal, F., Jesus, C., De Aguiar, J.B., Camoes, A.F. (2012). Properties and durability of HPC with tyre rubber wastes, Construction and Building Materials, 34, 186-191. https://doi.org/10.1016/j.conbuildmat.2012.02.062
  2. Chung, K.H., Hong, Y.K. (1999). Introductory behavior of rubber concrete, Journal of Applied Polymer Science, 72(1), 35-40. https://doi.org/10.1002/(SICI)1097-4628(19990404)72:1<35::AID-APP3>3.0.CO;2-B
  3. Eiras, J.N., Segovia, F., Borrachero, M.V., Monzo, J., Bonilla, M., Paya, J. (2014). Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires, Materials & Design, 59, 550-557. https://doi.org/10.1016/j.matdes.2014.03.021
  4. Eldin, N.N., Senouci, A.B. (1994). Measurement and prediction of the strength of rubberized concrete, Cement and Concrete Composites, 16(4), 287-298. https://doi.org/10.1016/0958-9465(94)90041-8
  5. Lin, C.Y., Yao, G.C., Lin, C.H. (2010). A study on the damping ratio of rubber concrete, Journal of Asian Architecture and Building Engineering, 9(2), 423-429. https://doi.org/10.3130/jaabe.9.423
  6. Mohammed, B.S., Hossain, K.M.A., Swee, J.T.E., Wong, G., Abdullahi, M. (2012). Properties of crumb rubber hollow concrete block, Journal of Cleaner Production, 23(1), 57-67. https://doi.org/10.1016/j.jclepro.2011.10.035
  7. Najim, K.B., Hall, M.R. (2012). Mechanical and dynamic properties of self-compacting crumb rubber modified concrete, Construction and Building Materials, 27(1), 521-530. https://doi.org/10.1016/j.conbuildmat.2011.07.013
  8. Segre, N., Joekes, I. (2000). Use of tire rubber particles as addition to cement paste, Cement and Concrete Research, 30(9), 1421-1425. https://doi.org/10.1016/S0008-8846(00)00373-2
  9. Shen, W., Shan, L., Zhang, T., Ma, H., Cai, Z., Shi, H. (2013). Investigation on polymer-rubber aggregate modified porous concrete, Construction and Building Materials, 38, 667-674. https://doi.org/10.1016/j.conbuildmat.2012.09.006
  10. Siddique, R., Naik, T.R. (2004). Properties of concrete containing scrap-tire rubber-an overview, Waste Management, 24(6), 563-569. https://doi.org/10.1016/j.wasman.2004.01.006