• Title/Summary/Keyword: 구조적 안정도

Search Result 5,264, Processing Time 0.036 seconds

Design of the Submerged Outlet Structure for Reducing Foam at a Power Plant using a Numerical Model Simulating Air Entrainment (공기연행 수치모형을 이용한 발전소 거품저감 수중방류구조 설계)

  • Kim, Ji-Young;Kang, Keum-Seok;Oh, Young-Min;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.452-460
    • /
    • 2008
  • Anti-foaming agents and foam fences have been used to remove the foam at the outfall of power plants, but there are some problems as consumption of maintenance costs and insufficiency of effect. Therefore, development of the methods how to remove the foam by stable coastal structure has been required. In this study, numerical simulation of air entrainment was carried out to design the submerged outlet structure for reducing foam using curtain walls. The air entrainment rate and the discharge of entrained air change according to the shape of weir and curtain wall. Hence, it is necessary to design the optimum section through comparison of each case. The optimum section which has the maximum rate of foam reduction was determined by the simulation results. In addition, it was found that the flow velocity at the submerged outlet is to be smaller than 1 m/s and the submerged depth of curtain wall is to be taller than height of the submerged outlet section.

A case Study on Settlement and Bearing Capacity Improvement for Soft Clay Applying the Reinforcement Method using Stabilized Soil (고화처리공법이 적용된 연약점토지반의 침하 및 지지력 개선에 관한 사례연구)

  • Ki, Wan-Seo;Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3923-3930
    • /
    • 2014
  • In this study, the physical and dynamic characteristics of soil were analyzed by selecting 3 sections as research subjects among road and structure construction sections in the construction site of the Gwangyang ${\bigcirc}{\bigcirc}$ industry area, and conducted consolidation analysis and bearing capacity assessments through Midas-GTS according to the construction conditions of the structures and section conditions of reinforcement using stabilized soil. The effects of improving the settlement and bearing capacity according to the improved effects of the stability and sections of reinforcement using stabilized soil in applying the reinforcement method using stabilized soil were analyzed as a solution for improving the settlement and bearing capacity of soft clay for constructing roads and structures. The improvement effects of the settlement and bearing capacity were outstanding when the reinforcement method using stabilized soil to the soft clay was applied. After applying the reinforcement method using stabilized soil, the holdback effect of the consolidation settlement was excellent by decreasing the volume of the consolidation settlement from a minimum of 53% to a maximum of 82%. When the width of the reinforcement using stabilized soil was twice the width of the constructed structure, it was found that the holdback effect of the consolidation settlement ranged from 1% to 7% through the width of reinforcement using stabilized soil. In addition, when applying reinforcement more than 6m in width and 1m in depth using stabilized soil, it was found that the increase in the allowable bearing capacity was 2.3 to 3.3 times more than that before applying the reinforcement, which suggests that the increase in bearing capacity by applying the reinforcement method using stabilized soil was significant.

Analysis and Design of a Wideband Corrugated Conical Horn Antenna Based on Mode Matching Converter (모드정합 컨버터에 기반한 광대역 원뿔형 주름 혼안테나 설계 및 분석)

  • Lee, Dong-Hak;Yang, Doo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.1-7
    • /
    • 2016
  • In this paper, the design methodology of a corrugated conical horn antenna is proposed to be obtain wide-band properties over the full range of frequencies in the Ku-band. In order to improve the properties of the corrugated conical horn antenna, such as its gain, VSWR, co-polarization to cross-polarization ratio and wide-bandwidth, two types of mode matching converters are implemented within it. One is located at the end of the circular waveguide, while the other is positioned in front of the horn-flare section. The properties of the antenna are analyzed and compared according to the position of the proposed converters through simulations. In the comparison of the antenna performance in the case where the VSWR, co-polarization to cross-polarization ratio and antenna gain over the Ku band of 12-18 GHz are less than 2, greater than 30dB and 20dB respectively, the former antenna exhibits greater stability and a wider frequency band than the latter from the viewpoint of transmitting and receiving signals simultaneously. Therefore, considering the gain, VSWR, radiation pattern and bandwidth, the horn antenna structure in which the mode matching converter is implemented inside the circular waveguide has better performance than the other.

Changes in Riparian Vegetation After Restoration in a Urban Stream, Yangjae Stream (도시 하천 양재천에서 복원후 하안식생의 변화)

  • Cho, Hyung-Jin;Woo, Hyoseop;Lee, Jinwon;Cho, Kang-Hyun
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.111-124
    • /
    • 2008
  • The changes in flora and distribution and structure of vegetation were monitored for seven years at a restored reach of an urban stream, the Yangjae Stream, southeast of Seoul, Korea. In the restored reach, diverse kinds of the close-to-nature stream restoration techniques were adapted and implemented in the winter of 1998-1999. The species numbers and diversity indices of riparian plants at the restored reach were higher than those at the unrestored reach seven years after the restoration implementation. But plant diversity was decreased from the early restoration stage of 1999 - 2001 to seven years after the implementation. The dominant species changed from a ruderal annual, Humulus japonicus, to a perennial, Phragmites australis. The floral structure was distinctly different between in the early stage and seven years later on the results of principal component analysis (PCA) because of decreasing in numbers of exotic or ruderal species and planted or introduced plants in newly disturbed habitats. The distribution areas of communities of Humulus japonicus and Erigeron annuus were decreased and those of communities Phragmites australis and Miscanthus sacchariflorus were increased after the restoration implementation. The results of detrended correspondence analysis (DCA) of plant communities revealed that the community structure were changed from the disturbed vegetations to the stable and natural vegetation after the restoration implementation. Total seven species of willows were found at the restored reach, of which two species were planted and the others were naturally introduced. The monitoring results showed that the stream ecosystem of the study reach were successfully recovered in flora and vegetation and could be used as a model site for the stream restoration in urban streams.

  • PDF

Dynamic Behavior of Group Piles according to Pile Cap Embedded in Sandy Ground (사질토 지반에서 말뚝 캡의 근입에 따른 무리말뚝의 동적거동)

  • Kim, Seongho;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.35-41
    • /
    • 2018
  • Dynamic interaction of the ground-foundation-structure must be considered for safety of earthquake resistant design for piles supported structures. The p-y curve, which is proposed in the static load and cyclic load cases, is used for the earthquake resistant design of piles. The p-y curve does not consider dynamic interaction of the ground-foundation-structure on dynamic load cases such as earthquake. Therefore, it is difficult to apply the p-y curve to earthquake resistant design. The dynamic p-y curve by considering dynamic interaction of the ground-foundation-structure has been studied, and researches had same conditions that pile caps were on the ground surface and superstructures were added on pile caps for the simple weight. However, group piles are normally embedded into the ground except for marine structures, so it seems that the embedding the pile cap influences on the dynamic p-y curve of group piles. In this study, the shaking table model test was conducted to confirm dynamic behavior of group piles by the embedded pile cap in the ground. The result showed that dynamic behavior was different between two cases by embedding the pile cap or not.

A Study on Fracture Behavior of Center Crack at Unidirectional CFRP due to Stacking Angle (적층각도에 따른 단방향 CFRP에서의 중앙 크랙의 파괴 거동에 관한 연구)

  • Park, Jae-Woong;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • Carbon fiber reinforced plastic (CFRP), one of lightweight materials, is the fiber structure using carbon fiber. It is the composite material that has the characteristics of carbon and plastic. As for the fiber structure, it has the great strength due to fiber direction. CFRP for woven type is used mostly as such a CFRP with lightweight. Woven type is more stable when compared with unidirectional type. On the other hand, woven type is highly priced. Therefore, this study aims to analyze the fiber structure of unidirectional CFRP. In this study, as the stacking angle [0/X/-X/0], X is the variable. This is unidirectional CFRP in which the angle phase of X has been reversed and stacked. By using such a unidirectional CFRP, the analysis model which had a crack at the center as the form of panel with the thickness of 2 mm was used. On analysis, the load is applied on the upper and lower parts being connected with a pin. The damage in the area near center crack was investigated. As for the analysis model, 3D surface model was designed by using CATIA. For CFRP stacking, the stacking direction was determined by using ACP in ANSYS program and the analysis model with two stacks was made. Afterwards, the structural analysis was carried out.

Application of Three-Dimensional Numerical Irregular wave Tank(3D-NIT) Model (3차원 불규칙 수치파동수조(3D-NIT) 모델의 적용성에 관한 연구)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.388-397
    • /
    • 2012
  • In this study, 3D-NIT(3-Dimensional Numerical Irregular wave Tank) model in which regular wave as well as stable irregular wave can be generated in 3-dimensional numerical irregular wave tank was proposed. To verify validity, the following steps need to be conducted: 1) comparative analysis between calculated waveforms and targeted waveforms at the wave generating point, 2) comparative analysis with the existing experimental values of overtopping volume estimated, targeting shore protection structures installed on a slope bed, 3) comparison with the existing numerical and hydraulic experimental results through application in the analysis on the wave deformation by structures and wave force acting on the vertical cylindrical structures. Based on the results, characteristics of the breaking wave forces according to incident waves and interval distance of structures were identified through application of 3D-NIT model in the analysis on the breaking wave forces acting on the cylindrical structures installed on a slope bed, and reflection and overtopping was reviewed through application in the special breakwaters on the domestic fields. The numerical results obtained the 3D-NIT model are in good agreement with experimental results, and its applicaion to the complex-shpaed coastal structures is verified.

Development of High Strength Lattice Girder and Evaluation of Its Performance (고강도 격자지보재의 개발 및 그 성능 평가)

  • Lee, Jae-Won;Min, Kyong-Nam;Jeong, Ji-Wook;Roh, Byoung-Kuk;Lee, Sang-Jin;Ahn, Tae-Bong;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.43-57
    • /
    • 2020
  • The objective of this study was to evaluate the performance of high-strength lattice girders as a possible superior alternative to conventional steel arch ribs. For this purpose, the structural characteristics of supports were analyzed using numerical analysis, and their performance was evaluated using maximum bending load tests and tensile tests of the welded joint. According to the results of structural analysis, the optimum size of the upper and lower members and plates is 50 mm × 31.8 mm × 25.4 mm, demonstrating excellent functionality and economic efficiency. High-strength lattice girders of dimensions 55 mm × 30 mm × 20 mm and 85 mm × 30 mm × 20 mm, determined from bending load tests, are found to meet both the reference values and the target values of H-profiles 100 and 125. A review of the ratio of theoretical deflection to actual deflection shows that the high-strength lattice girder developed during this study meets fewer than five of the evaluation criteria for lattice girder deflections proposed by the Federal Railway Department of Germany. Finally, tensile test results reveal that the welded joint of the high-strength lattice girder at the main steel bar-auxiliary steel bar-plate junction exceeds the target value, indicating that the welded joint has sufficient stability.

The Influence Factors on the Compensation of Column Shortening in Tall Buildings (초고층 건물의 Column Shortening보정에 미치는 영향요소)

  • Mun, Il-Won;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.208-215
    • /
    • 2018
  • The causes of column shrinkage and the codes that have been studied up to now are discussed. The documents mentioned in the code deal with the drying shrinkage, creep, compressive strength and elastic modulus of the specimen, and the elastic deformation calculated from the structural analysis. However, the deformation due to the temperature caused by the long term monitoring is less than that caused by the factors generated by the previous studies. In the previous studies, it was found that dehydration shrinkage, creep, and elastic deformation were not considered for temperature-induced deformation, while for the specimen experiments, the temperature-related items were replaced with the humidity-related terms The compensation value by the proposed equation showed error of 4.9 mm in the upper direction and 1.0mm in the lower direction when calculating column shortening, and it was found that its value by the proposed equation almost coincided with the measurement value in Site. Therefore, it is necessary to further study the temperature that can be omitted in calculating the existing column shortening, to consider the influence factors, and to supplement the criteria for the temperature measurement of the structure as well as the specimen tests.

Theoretical Investigation for the Adsorption of Various Gases (COx, NOx, SOx) on the BN and AlN Sheets (N과 AlN 시트에 다양한 기체(COx, NOx, SOx)의 흡착에 관한 이론 연구)

  • Kim, Sung-Hyun;Kim, Baek-Jin;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • The adsorption of various atmospheric harmful gases ($CO_x$, $NO_x$, $SO_x$) on graphene-like boron nitride(BN) and aluminum nitride(AlN) sheets was theoretically investigated using density functional theory (DFT) and MP2 methods. The structures were fully optimized at the $B3LYP/6-31G^{**}$ and $CAM-B3LYP/6-31G^{**}$ levels of theory and confirmed to be a local minimum by the calculation of the harmonic vibrational frequencies. The MP2 single-point binding energies were computed at the $CAM-B3LYP/6-31G^{**}$ optimized geometries. Also the zero-point vibrational energy (ZPVE) and 50%-basis set superposition error (BSSE) corrections were included. The adsorptions of gases on the BN sheet were predicted to be a physisorption process and the adsorptions of gases on the AlN sheet were predicted to be a physisorption process for $CO_x$ and $NO_x$ but to be a chemisorption process for $SO_x$.