• Title/Summary/Keyword: 공학적 문제해결

Search Result 2,103, Processing Time 0.031 seconds

Study of Benefit Characteristics for Low Impact Development (LID) Facilities demonstrated in Seoul Metropolitan (서울시 저영향개발(LID) 시범 시설에 대한 편익 특성 연구)

  • Lee, Seung Won;Kim, Reeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.299-308
    • /
    • 2016
  • Seoul metropolitan has established a vision as 'Healthy water-cycle city' to resolve urban water-environmental deterioration. And it established administrative structure to expand Low Impact Development (LID) facilities to recover aggravated water-cycle and water-environment. Therefore, various LID facilities are constructed and operated, however, benefit analytic plans for systematic valuation are insufficient. In this study, to analyze economic, environmental and social benefits of LID facilities, contents for benefit analysis were selected and categorized as water, energy, air quality and climate changes. As a result of quantification and valuation to the beneficial effects, LID facilities showed the total benefit as 1,191~3,292 won/yr. Characteristics of benefit distribution by analysis contents were various reflecting functional characteristics of each LID facility (Water: 30~90%, Energy: 4~44%, Air quality: <1~2%, Climate change: 5~22%). As a result of Triple Bottom Line analysis, economic benefit showed the greatest portion as 75~90%. As further studies, suggested benefit assessment plans for each LID facility should be applied to inter-connected LID systems on complex-scaled area, and synergy effects by various LID systems would be evaluated such as prevention of heat island and flood disasters.

An Efficient Inter-Prediction Hardware Design for the H.264/AVC Decoder (H.264/AVC 디코더를 위한 효율적인 인터 예측 하드웨어 구조 설계)

  • Jin, Xianzhe;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.112-115
    • /
    • 2009
  • Inter-Prediction is always the main bottleneck in H.264/AVC Baseline Profile. This paper describes an efficient Inter-Prediction hardware architecture design. H.264/AVC decoder supports various block types such as $16{\times}16$, $16{\times}8$, $8{\times}16$, $8{\times}8$, $8{\times}4$, $4{\times}8$, $4{\times}4$ block types. Reference Software(JM) only considers the $4{\times}4$ block type when the reference block is being fetched. This causes duplicated pixels which needs extra fetch cycles. In order to eliminate some of the duplicated pixels, the $8{\times}8$ and $4{\times}4$ block types were considered in the previous design. If the block size is larger than or equal to the $8{\times}8$ block type, it will be separated into several $8{\times}8$ block types and if the block size is smaller than the $8{\times}8$ block type it will be separated into several $4{\times}4$ blocks. For further reduction of the fetch cycles, the various block types are considered in this paper. As a result, the maximum cycle reduction percentage is 18.6% comparing with the previous design.

  • PDF

Silicon/Carbon Composites Having Bimodal Mesopores for High Capacity and Stable Li-Ion Battery Anodes (고용량 고안정성 리튬 이차전지 음극소재를 위한 이중 중공을 갖는 실리콘/탄소 복합체의 설계)

  • Park, Hongyeol;Lee, Jung Kyoo
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In order to address many issues associated with large volume changes of silicon, which has very low electrical conductivity but offers about 10 times higher theoretical capacity than graphite (Gr), a silicon nanoparticles/hollow carbon (SiNP/HC) composite having bimodal-mesopores was prepared using silica nanoparticles as a template. A control SiNP/C composite without a hollow structure was also prepared for comparison. The physico-chemical and electrochemical properties of SiNP/HC were analyzed by X-ray diffractometry, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements for surface area and pore size distribution, scanning electron microscopy, transmission electron microscopy, galvanostatic cycling, and cyclic voltammetry tests to compare them with those of the SiNP/C composite. The SiNP/HC composite showed significantly better cycle life and efficiency than the SiNP/C, with minimal increase in electrode thickness after long cycles. A hybrid composite, SiNP/HC@Gr, prepared by physical mixing of the SiNP/HC and Gr at a 50:50 weight ratio, exhibited even better cycle life and efficiency than the SiNP/HC at low capacity. Thus, silicon/carbon composites designed to have hollow spaces capable of accommodating volume expansion were found to be highly effective for long cycle life of silicon-based composites. However, further study is required to improve the low initial coulombic efficiency of SiNP/HC and SiNP/HC@Gr, which is possibly because of their high surface area causing excessive electrolyte decomposition for the formation of solid-electrolyte-interface layers.

Structural Characteristics Analysis of Steel Box Girder Bridge being stressed the PS Steel Wires at the Upper Slab of the Intermediate Support (지점부 상부슬래브에 PS강선 긴장된 강 박스거더교의 구조적 특성 분석)

  • Cha, Tae-Gweon;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • The concrete deck slab at the continuous span support of the steel box girder bridge is a structure that is combined with the upper flange. It is a structure that can cause tension cracks in the deck slab at the support causing problems such as durability degradation in long span bridges. This is because the tensile stress in the longitudinal direction of the slab exceeds the design tensile strength due to the effects of dead load and live load when applying a long span. Accordingly, it is necessary to control tensile cracking by adding a reinforcing bar in the axial direction to the slab at the support and to introduce additional compressive stress. To solve this problem, a structural system of a steel box girder bridge was proposed that introduces compressive stress as PS steel wire tension in the tensile stress section of the upper slab in the continuous support. The resulting structural performance was compared and verified through the finite element analysis and the steel wire tension test of the actual specimen. By introducing compressive stress that can control the tensile stress and cracking of the slab generated in the negative moment through the tension of the PS steel wire, it is possible to improve structural safety and strengthen durability compared to the existing steel box girder bridge.

The Halla Seolmundae Inner Body and Soul: From The DNA Silk To The Packing DNA Thin Silk (한라 설문대 속살(內肉)과 혼(魂):생명주(生明紬)에서 세명주(細明紬)로)

  • Kim, Jeong Su;Lee, Sung Kook;Lee, Moon Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.219-225
    • /
    • 2022
  • 1950-meter-tall goddess is Seolmundae Grandmother with the head of the 1950m Hallasan Mountain Baengnokdam and the body of the mountain ridgeline. Seolmundae Grandmother in Jeju is a folk belief that has been passed down from generation to generation in Jeju. Unlike inland, Seolmundae Grandmother, which had femininity in the customs of Jeju, which was a matrilineal society, developed into an absolute faith in Jeju, metaphorizing that in some way it was inevitable. Seolmundae Grandmother was the only subject that could mentally solve the biggest problem for Jeju residents, even if they were disconnected from the mainland. In other words, Seolmundae Grandmother was unable to make underwear for Seolmundae Grandmother because it was short of 100 bottles of silk, the god of Hallasan, a huge being and a physical symbol. Therefore, Semyungju Grandmother gave up the bridge connecting the mainland and Jeju. In this paper, focusing on the fact that Mt. Halla, covered with snow in winter, is like a skein of silk thread that we usually use in our daily lives, the etymology of Seolmundae has been changed to Saengmyeongju, - Semyungju, which is a skein of fine silk. As a basis for this, there is a custom of tying a thread of silk in 'Semyungju', a shrine to Semyeongju in Halmangdang, 'Hanmosal' along the coast of Pyoseon-myeon. The silk thread is the core of the Packing DNA gene. The summit of Mt. Halla, Ninety-Nine Valleys, and five hundred generals, found in Seolmundae Grandmother or White Silk, expressed the symbols of Jeju. The Packing DNA gene was found to originate in the Jeongnang

Case Study of Establishing and Operating Maker Space in A Developing Country - Focusing on iTEC Tech-shop in Tanzania - (개발도상국 메이커 스페이스 구축 및 운영 사례 - 탄자니아 iTEC 테크샵을 중심으로 -)

  • Im, Hyuck-Soon;Jung, Woo-Kyun;Ngajilo, Tunu Y.;Meena, Okuli;Lee, Ahnna;Ahn, Sung-Hoon;Rhee, Hyop-Seung
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.126-135
    • /
    • 2020
  • Recently, with the development of the 4th Industrial Revolution era and the popularization of technologies the maker movement is spreading worldwide in various ways for education, entrepreneurship, and solving social problems. This paper introduces a case of establishing and operating a maker space in Tanzania, East Africa, one of the developing countries. iTEC Tech-shop was established in the first half of 2018 at the Nelson Mandela African Institution of Science and Technology (NM-AIST) in Arusha, Tanzania by Innovative Technology and Energy Center (iTEC), and has been operating for nearly two years. With the allocation of empty warehouse space from NM-AIST, physical facilities were established through the purchase and installation of equipment and hand tools. Based on the advice from Idea Factory of Seoul National University and Fab-Lab Seoul, iTEC Tech-shop operational system were established. Through a total of 7 technical workshops, iTEC Tech-shop provided training courses for about 180 local personnel. In addition, the smart Techshop test-bed project was promoted in order to improve the operation level along with securing sustainability of the Techshop. The case of the iTEC Tech-shop could be a useful case for institutions or organizations promoting the maker movement to developing countries.

Effects of Practical Training Using 3D Printed Structure-Based Blind Boxes on Multi-Dimensional Radiographic Image Interpretation Ability (3D 프린팅 구조물 기반 블라인드박스를 이용한 실습교육이 다차원 방사선영상해독력에 미치는 효과)

  • Youl-Hun, Seoung
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.131-139
    • /
    • 2023
  • In this study, we are purposed to find the educational effect of practical training using a 3D printed structure-based blind box on multidimensional radiographic image interpretation. The subjects were 83 (male: 49, female: 34) 2nd year radiological science students who participated in the digital medical imaging practice that was conducted for 3 years from 2020 to 2022. The learning method used 3D printing technology to print out the inside structure of the blind box designed by itself. After taking X-rays 3 times (x, y, z axis), the structure images in the blind box were analyzed for each small group. We made the 3D structure that was self-made with clay based on our 2D radiographic images. After taking X-rays of the 3D structure, it was compared whether it matches the structural image of the blind box. The educational effect for the practical training surveyed class faithfulness, radiographic image interpretation ability (attenuation concept, contrast concept, windowing concept, 3-dimensional reading ability), class satisfaction (interest, external recommendation, immersion) on a 5-point Likert scale as an anonymous student self-writing method. As a result, all evaluation items had high positive effects without significant differences between males and females. Practical education using blind boxes is a meaningful example of radiology education technology using 3D printing technology, and it is expected to be used as content to improve students' problem-solving skills and increase satisfaction with major subjects.

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization (열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향)

  • Youn, Hee Sun;Um, Byung Hwan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.

Fake News Detection Using CNN-based Sentiment Change Patterns (CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지)

  • Tae Won Lee;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.

Investigating the Restructuring of Artificial Intelligence Curriculum in Specialized High Schools Following AI Department Reorganization (특성화고 인공지능학과 개편에 따른 인공지능 교육과정 개편 방안 연구)

  • EunHee Goo
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.41-49
    • /
    • 2024
  • The advancement of artificial intelligence on a global scale is significantly transforming life. In the field of education, there is a strong emphasis on actively utilizing AI and fostering creatively integrated talents with diverse knowledge. In alignment with this trend, there is a paradigm shift in AI education across primary, middle, high school, as well as university and graduate education. Leading AI schools and specialized high schools are dedicated to enhancing students' AI capabilities, while universities integrate AI into software courses or establish new AI departments to nurture talent. In AI-integrated education graduate programs, national efforts are underway to educate instructors from various disciplines on applying AI technology to the curriculum. In this context, specialized high schools are also restructuring their departments to cultivate technological talent in AI, tailored to students' characteristics and career paths. While the current education focuses primarily on the fundamental concepts and technologies of AI, there is a need to address the aspect of developing practical problem-solving skills. Therefore, this research aims to compare and analyze essential educational courses in AI-leading schools, AI-integrated high schools, AI high schools, university AI departments, and AI-integrated education graduate programs. The goal is to propose the necessary educational courses for AI education in specialized high schools, with the expectation that a more advanced curriculum in AI education can be established in specialized high schools through this effort.