과제정보
본 논문은 농촌진흥청 공동연구사업(과제번호: PJ014779)의 지원에 의해 이루어진 것임.
참고문헌
- I. Energy Agency, Statistics report Key World Energy Statistics 2020, IEA (2020).
- N. P. Say, Lignite-fired thermal power plants and SO2 pollution in Turkey, Energy Policy, 34, 2690-2701 (2006). https://doi.org/10.1016/j.enpol.2005.03.006
- M. Govindaraju, R. S. Ganeshkumar, V. R. Muthukumaran, and P. Visvanathan, Identification and evaluation of air-pollution-tolerant plants around lignite-based thermal power station for greenbelt development, Environ. Sci. Pollut. Res., 19, 1210-1223 (2012). https://doi.org/10.1007/s11356-011-0637-7
- J. Park, Woody pellet produce and sale rate, Korea Forest Service (2020).
- S. Hong, Analysis report on eco-friendly crops(kenaf), KONETIC (2018)
- S. Nizamuddin, H. A. Baloch, G. J. Griffin, N. M. Mubarak, A. W. Bhutto, R. Abro, S. A. Mazari, and B. S. ali, An overview of effect of process parameters on hydrothermal carbonization of biomass, Renew. Sust. Energ. Rev., 73, 1289-1299 (2017). https://doi.org/10.1016/j.rser.2016.12.122
- S. T. Yoganandham, G. Sathyamoorthy, and R. R. Renuka, Emerging extraction techniques: Hydrothermal processing, In: Sustainable Seaweed Technologies. 191-205, Elsevier (2020).
- M. Wilk, M. Sliz, and M. Gajek, The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp, Renew. Energ., 177, 216-228 (2021). https://doi.org/10.1016/j.renene.2021.05.112
- S. Nizamuddin, N. M. Mubarak, M. Tiripathi, N. S. Jayakumar, J. N. Sahu, and P. Ganesan, Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell, Fuel, 163, 88-97 (2016). https://doi.org/10.1016/j.fuel.2015.08.057
- G. Wang, J. Zhang, J. Y. Lee, X. Mao, L. Ye, W. Xu, X. Ning, N. Zhang, H. Teng, and C. Wang Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace, Appl. Energ., 266 (2020).
- P. Grammelis, N. Margaritis, and E. Karampinis, Solid fuel types for energy generation: Coal and fossil carbon-derivative solid fuels, In: Fuel Flexible Energy Generation: Solid, Liquid and Gaseous Fuels, 29-58, Elsevier (2016).
- K. Fakkaew, T. Koottatep, S. Jairuang, and C. Polprasert, Hydrochar pellet produced from hydrothermal carbonization of fecal sludge, Biomass Convers. Biorefin. (2021).
- S. F. Shaikh, M. Ubaidullah, R. S. Mane, and A. M. Al-Enizi, Types, Synthesis methods and applications of ferrites, In: Spinel Ferrite Nanostructures for Energy Storage Devices, 51-82, Elsevier (2020).
- Y. T. Yang, X. X. Yang, Y. T. Wang, J. Luo, F. Zhang, W. J. Yang, and J. H. Chen, Alcohothermal carbonization of biomass to prepare novel solid catalysts for oleic acid esterification, Fuel, 219, 166-175 (2018). https://doi.org/10.1016/j.fuel.2018.01.072
- Y. C. Zhao, L. Zhao, L. J. Mao, and B. H. Han, One-step solvothermal carbonization to microporous carbon materials derived from cyclodextrins, J. Mater. Chem. A, 1, 9456-9461 (2013). https://doi.org/10.1039/c3ta10227k
- S. A. Channiwala and P. P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel, 81, 1051-1063 (2002). https://doi.org/10.1016/S0016-2361(01)00131-4
- L. Nazari, Z. Yuan, S. Souzanchi, M. B. Ray, and C. Xu, Hydrothermal liquefaction of woody biomass in hot-compressed water: Catalyst screening and comprehensive characterization of bio-crude oils, Fuel, 162, 74-83 (2015). https://doi.org/10.1016/j.fuel.2015.08.055
- S. K. Hoekman, A. Broch, and C. Robbins, Hydrothermal carbonization (HTC) of lignocellulosic biomass, Energy Fuels, 25, 1802-1810 (2011). https://doi.org/10.1021/ef101745n
- K. Raveendran, A. Ganesh, and K. C. Khilar, Pyrolysis characteristics of biomass and biomass components, Fuel, 75, 987-998 (1996). https://doi.org/10.1016/0016-2361(96)00030-0
- S. Brand, F. Hardi, J. Kim, and D. J. Suh, Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol, Energy, 68, 420-427, Apr. (2014). https://doi.org/10.1016/j.energy.2014.02.086
- B. Babinszki, E. Jakab, Z. Sebestyen, M. Blazso, B. Berenyi, J. Kumar, B. B.Krishna, T. Bhaskar, and Z. Czegeny, Comparison of hydrothermal carbonization and torrefaction of azolla biomass: Analysis of the solid products, J. Anal. Appl. Pyrol., 149 (2020).
- N. Xiang, P. Xu, N. Ran and T. Ye, Production of acetic acid from ethanol over CuCr catalysts: Via dehydrogenation-(aldehyde-water shift) reaction, RSC Adv., 7, 38586-38593 (2017). https://doi.org/10.1039/C7RA05922A
- A. Funke and F. Ziegler, Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering, Biofuel. Bioprod. Biorefin., 6, 246-256 (2010). https://doi.org/10.1002/bbb.1324
- M. Zhou, J. Xu, J. Jiang, and B. K. Sharma, A Review of Microwave Assisted Liquefaction of Lignin in Hydrogen Donor Solvents: Effect of Solvents and Catalysts, Energies, 11 (2018).
- H. B. Sharma, A. K. Sarmah, and B. Dubey, Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar, Renew. Sust. Energ. Rev., 123. Elsevier Ltd (2020).
- S. Rasam, M. Keshavarz Moraveji, A. Soria-Verdugo, and A. Salimi, Synthesis, characterization and absorbability of Crocus sativus petals hydrothermal carbonized hydrochar and activated hydrochar, Chem. Eng. Process., 159, 108236 (2021). https://doi.org/10.1016/j.cep.2020.108236
- X. Zhang, L. Zhang, and A. Li, Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization, J. Environ. Manage., 201, 52-62 (2017). https://doi.org/10.1016/j.jenvman.2017.06.018
- H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86, 1781- 1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013
- S. Basakcilardan Kabakci and S. S. Baran, Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars, Waste Manage., 100, 259-268 (2019). https://doi.org/10.1016/j.wasman.2019.09.021
- J. G. Lynam, M. T. Reza, W. Yan, V. R. Vasquez, and C. J. Coronella, Hydrothermal carbonization of various lignocellulosic biomass, Biomass Convers. Biorefin., 5, 173-181 (2015). https://doi.org/10.1007/s13399-014-0137-3
- R. K. Mishra and K. Mohanty, Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresour. Technol., 251, 63-74 (2018). https://doi.org/10.1016/j.biortech.2017.12.029
- W. Yan, S. Perez, and K. Sheng, Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: Dry torrefaction and hydrothermal carbonization, Fuel, 196, 473-480 (2017). https://doi.org/10.1016/j.fuel.2017.02.015
- M. B. Samaila, B. G. Muhammad, A. H. Adam, A. Moumouni, and S. Bello, Characterization of Coal obtained from the Sahelian Regions of Nigeria and Niger Republic, J. Appl. Sci. Environ. Manage., 24, 299-302 (2020).