• Title/Summary/Keyword: 공용 중 콘크리트 구조물

Search Result 30, Processing Time 0.025 seconds

Penetration of De-icing Salt in Bare Concrete Bridge Decks in Highways (고속도로 콘크리트 노출 바닥판에서의 제설 염화물의 침투 특성)

  • Suh, Jin Won;Ku, Bon Sung;Rhee, Ji Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • In 1980s, a number of bridges with bare concrete deck were constructed on the Korea highway. After 20 years service, many bare concrete decks are still in good condition without special maintenance activity. Therefore, the application of the bare concrete deck is being reestimated from the view of construction and maintenance. As a part of the program, the characteristic of penetration(surface chloride and apparent diffusion coefficient) of de-icing salt into bare concrete bridge deck was analyzed in order to predict the service life of bridge on Korea highway.

Diffusion of Chloride Ions and Evaluation of Lifetime in Highway Bridges (고속도로 교량의 염소이온확산 특성과 공용수명 평가)

  • Shin, Jae-In;Park, Chang-Ho;Lee, Byeong-Ju;Kim, Hyeong-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.152-158
    • /
    • 2007
  • Chloride attach is one of the main factors which cause the deterioration of structures. In the case highway bridges, de-ice salts very significantly increase the surface scaling due to frost action. The deteriorated concrete is subject to experience degrading of durability under chloride attach environment. In this study, diagnosis report of 147 bridges is investigated and core sample of 21 bridge decks is examined and analyzed. The results show that the cover of decks concrete is required more than 8cm for retaining bridge lifetime over 30 years.

Resistance to Freezing and Thawing of Concrete Subjected to Carbonation (탄산화를 받은 콘크리트의 동결융해 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.623-631
    • /
    • 2018
  • In this study, the degree of deterioration of concrete was investigated in the laboratory under conditions of carbonation and freeze-thaw cycling, which are the major causes of the deterioration of its performance. In this test, the carbonated concrete was subjected to combined freeze-thaw deterioration tests for up to 300 cycles, and its dynamic elastic modulus and compressive strength were measured. The evaluation of the effect of the water-binder ratio on normal concrete subjected to combined carbonization and freezing-thawing showed that its resistibility against such combined deterioration decreased more rapidly in the concrete with a water-binder ratio of 55 % compared with that having a water-binder ratio of 35 %. In the case where the concrete was blended with a mineral admixture consisting of fly ash and blast furnace slag at the same water-binder ratio, it showed an increase of its resistibility against combined deterioration.

Estimation of Compressive Strength for Existing Concrete Structures by Non-Destructive Tests (비파괴시험에 의한 기존 콘크리트 구조물의 압축강도 추정)

  • 구봉근;오병환;김영의;김태봉;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.159-172
    • /
    • 1994
  • The relmund hammer test and ultrasonic pulse velocity test methods are commonly used to determine the in-situ compressive strength of concrete. One of the special feature of these methods is that they cannot give consistent and reliable results for variety of structures. In particular, very old existing structures have been generally received sreious environmental affectsand thus the strength prediction will be different from normal structures. The purpose of the present study is, therefore, to propose realistic equations to predict the in-situ strengths of actual old concrete structures. The rebound hammer and ultrasonic pulse velocity tests, carbonation depth measurments and core compressive strength measurements have been carried out for very old hydraulic and seacoast concrete structures spanning from one to about seventy years in age. From these test results, the strength-rebound number relations, the strength-pluse velocity relatinns and the strength-rebound number-pluse velocity relations have been obtained through multiple regression analysis. The present study indicates that the existing equations by nondestructive tests give quite different results from the present data. The proposed equations reasonably well predict the measured data for old concrete structures, especially for low strength concrete. The prediction equations proposed here can be efficiently used in determining the in-situ strength of old concrete structures.

Estimation of Nondestructive Strength Equations Based on the Results of In-situ Concrete Strength for Existing Bridges (국내 교량의 현장 코어강도를 활용한 개선된 비파괴강도 추정식 제안)

  • Kim, Hun-Kyom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.98-104
    • /
    • 2018
  • Nondestructive strength Equations are commonly used to determine the strength of concrete. However, the application of the existing equations may include many errors because this method is proposed on the basis of limited experimental parameters while actual bridges have various parameters such as conditions of concrete mixtures, properties of concrete strength, etc. Also, the error among the existing equations causes the confusion when engineers select the proper estimation equation for the concerned bridge. In this study, a series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges, based on the test results of the in-depth inspection, and the estimated strengths by means of the nondestructive strength equations are analyzed and compared with results of the core specimen strengths. According to results of analyses, the nondestructive strength equation proposed by CNDT Committee of Architectural Institute of Japan had high relationship with core strength. However, the strengths predicted by this equation, are underestimated when concrete's strengths are over 30 MPa, otherwise, they are overestimated. Also in this paper, based on the relationship between the estimated nondestructive concrete strengths and the core specimen strengths the modified strength equation through simple correlation analysis is proposed.

Analytical Technique on CFTA Girder Bridge Considering Construction Sequence (시공단계를 고려한 CFTA 거더교의 해석기법)

  • Park, Seung-Jae;Kim, Yong-Jae;Jeon, Jong-Su;Park, Myoung-Gyun;Park, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.167-168
    • /
    • 2009
  • The CFT structure is applied to newly developed CFTA girder because of improvement of ductility deformation, stiffness and internal force of structure owing to the interaction between steel tube and core concrete. CFTA girder is the structure which can reduce tensile stress due to external loads by using its arch shape and prestress force. This paper proposed constructional stage procedure and represented analytical technique considering constructional stage to investigate the safety against bridge collapse on construction and on operation.

  • PDF

Analysis of Safety Evaluation Guidelines for Practical Maintenance of Existing Concrete Structures (노후 콘크리트 구조물의 실용적 유지관리를 위한 콘크리트 구조물 안전진단 지침 분석)

  • Lee, Joo-Hyung;Cho, Jae-Yeol
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.83-92
    • /
    • 2020
  • In South Korea, problems caused by material deterioration of time-worn concrete structures have been increased recently. Because severe material deterioration could damage the structure's safety, it's important to evaluate the old structure's condition and structural capacity regularly to keep its proper performance. The safety evaluation of concrete structures has been initiated and performed periodically since 1995 according to a guideline in accordance with a law in Korea. The guideline prescribes the evaluation types, intervals and methods of the target structure. A lot of cost and labor have been invested every year to carry out the regular safety evaluation. However, it's not clear that the current manual could inspect the old structure's condition and assess the structural capacity precisely. Thus, the verification study initiated to figure out the Korean safety evaluation manual's practicalness. First, the Korean manual was analyzed and then compared with that of other countries for concrete bridges which are representative concrete structure. After that, the previously written evaluation reports were collected and analyzed to find out how the safety evaluation has been carried out. Based on the study results, the parts requiring verification of the manual were drawn. A research program is in progress in order to verify the parts by performing tests with actual structural members from decommissioned concrete bridges.

An Experimental Study on the Permeability of Reinforcement Concrete on Consideration of Pre-loading (선행하중을 고려한 보강 콘크리트의 투수성능에 관한 실험적 연구)

  • Han, Byoung-Young;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.87-92
    • /
    • 2005
  • The permeability of concrete affects largely on the durability of concrete, therefore it is required that the correct assessment and improvement of permeability. Therefore it is rational method that the permeability of concrete structures is estimated in the common use states under loading than in the early sound conditions. In this study, to improve the permeable efficiency of concrete, some kinds of fiber and resin are mixed in making of concrete specimens. And also, for the reasonable assessment of permeability, after 50% and 70% pre-loadings of its compressive strength were acted on the specimens, the tests were executed. From the results of this study, in the case of 50% pre-loading coefficients of permeability were increased about 1.4times against the nonpre-loading specimens and in the case of 70% pre-loading they were increased about 17.8times. And it turned out that hybrid steel fiber reinforcement is most effective for the improvement of permeable efficiency of concrete.

Adjustment of Creep Coefficient Using Sensitivity Analysis (민감도 해석을 통한 크리프 계수 오차 보정)

  • Park, Jong-Bum;Park, Bong-Sik;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.293-296
    • /
    • 2008
  • Creep and shrinkage in concrete structures are very complex phenomena in which various uncertainties exist with regard to inherent material variations as well as modeling uncertainties. The creep and shrinkage models which are capable of predicting long-term structural response are specified in design codes such as ACI 209-92, CEB-FIP Model Code 90, etc. However, in the prediction formulas of creep and shrinkage effects of concrete, various kinds of parameters are involved to express the characteristics of concrete under consideration (i.e. the proportion of concrete, the shape of the structure, relative humidity, etc.). And the predicted values from each design code under same environment differ from each other. To predict the characteristics of concrete, the long-term experiments of creep and shrinkage is necessary but this is not suitable for a construction field. In this study, adjustment method of creep coefficient using sensitivity analysis is proposed to predict creep coefficient of concrete exactly and it is checked up on the validity of the predicting method by comparing to the assumed value and predicted one.

  • PDF

A Study on the Fatigue behavior of Hybrid Fiber Reinforced High Strength Concrete (하이브리드섬유보강 고강도콘크리트의 피로거동에 관한 연구)

  • Kim, Nam-Wook;Choi, Go-Bong;Kim, Han-Sang;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.127-135
    • /
    • 2005
  • Recently, as the concrete structures are becoming bigger, higher, longer and more special, high strength concrete is demanded. But the fracture behavior of high strength concrete is shown more brittle than that of the normal strength concrete. Therefore, in order to improve the brittle fracture behavior and crack propagation resistance, ACI Committee363 has been recommend the use of fiber reinforced concrete which showed superior property against the crack propagation resistance. On the other hand, bridges, concrete pavements and railroads etc. have been exposed to the repetition loading at least several million times during the service life. Therefore, fatigue load is dominantly most of all, but it is very difficult to estimate the suitable fatigue strength calculated by fatigue load. In this research, in order to examine the fatigue behavior of hybrid fiber reinforced high strength concrete, the static and fatigue tests were carried out. And from these results, it was estimated the fatigue strength of hybrid fiber reinforced high strength concrete.