• Title/Summary/Keyword: 결합재

Search Result 1,741, Processing Time 0.023 seconds

Effect of the Combined Using of Fly Ash and Blast Furnace Slag as Cementitious Materials on Properties of Alkali-Activated Mortar (결합재(結合材)로 플라이애시와 고로(高爐)슬래그의 혼합사용(混合使用)이 알칼리 활성(活性) 모르타르의 특성(特性)에 미치는 영향(影響))

  • Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2010
  • Attempts to increase the utilization of a by-products such as fly ash and blast furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/slag, type of alkaline activator and curing condition on the workability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/slag and the type of alkaline activator always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

The Fundamental Properties of Alkali-Activated Slag Cement (AASC) Mortar with Different Water-Binder Ratios and Fine Aggregate-Binder Ratios (물-결합재 비와 잔골재-결합재 비에 따른 알칼리 활성화 슬래그 모르타르의 기초특성)

  • Kim, Tae-Wan;Hahm, Hyung-Gil;Lee, Seong-Haeng;Eom, Jang-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2013
  • This study investigates the fundamental properties of the water-binder (W/B) ratio and fine aggregate-binder (F/B) ratio in the alkali-activated slag cement (AASC) mortar. The W/B ratios are 0.35, 0.40, 0.45, and 0.50, respectively. And then the F/B ratios varied between 1.00 and 3.00 at a constant increment of 0.25. The alkali activator was an 2M and 4M NaOH. The measured mechanical properties were compared, flow, compressive strength, absorption, ultra sonic velocity, and dry shrinkage. The flow, compressive strength, absorption, ultra sonic velocity and dry shrinkage decreased with increases W/B ratio. The compressive strength decreases with increase F/B ratio at same W/B ratio. Also, at certain value of F/B ratio significant increase in strength is observed. And S2 (river sand 2) had lower physical properties than S1 (river sand 1) due to the fineness modulus. The results of experiments indicated that the mechanical properties of AASC depended on the W/B ratio and F/B ratio. The optimum range for W/B ratios and F/B ratios of AASC is suggested that the F/B ratios by 1.75~2.50 at each W/B ratios. Moreover, the W/(B+F) ratios between 0.13 and 0.14 had a beneficial effect on the design of AASC mortar.

Evaluation of pH and Compressive Strength Development of Alpha-Calcium Sulfate Hemihydrate-based Binder (알파형 반수석고 기반 결합재의 pH 및 강도발현 평가)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • This study examined the compressive strength development and pH values of alpha-calcium sulfate hemihydrate(${\alpha}-CH$)-based binders developed for vegetation concrete with neutral pH between 6~7. Considering cost down and strength enhancement of the prepared binders, the ${\alpha}-CH$ was partially replaced by ground granulated blast furnace slag(GGBS), fly ash(FA), or ordinary Portland cement(OPC) by 25% and 50%. The compressive strength of mortars using 100% ${\alpha}-CH$ was 50% lower than that of 100% OPC mortars. With the increase of the replacement level of GGBS or FA, the compressive strength of ${\alpha}-CH$-based mortars tended to decrease, whereas the pH values were maintained to be 6.5~7.5. The main hydration products of ${\alpha}-CH$-based binders with GGBS or FA were a gypsum($CaSO_4$), whereas portlandite($Ca(OH)_2$) was not observed in such binders. Meanwhile, the pH values of ${\alpha}-CH$-based binders with OPC exceeded 11.5 due to the formation of $Ca(OH)_2$ phase as a hydration product. From the thermogravimetric analysis, the amount of $Ca(OH)_2$ in ${\alpha}-CH$-based binders with OPC was evaluated to be approximately 10% of the cement content.

Physical Analysis of High Strength Concrete According to Mixing Methods of Binders for Application Analysis of Pre-Mix Cement (프리믹스 시멘트의 활용성 분석을 위한 결합재의 혼합방법에 따른 고장도 콘크리트의 물성 분석)

  • Han, Cheon-Goo;Lee, Hae-Ill
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.127-133
    • /
    • 2009
  • It is important to increase the strength of binders in order to enhance the strength of concrete. However, when the mineral admixture used for high strength concrete is incorporated individually, its dispersibility decreases due to the phenomenon of compaction, which reduces its fluidity and results in insufficient strength being created. To solve this problem, we can pre-mix each binder in advance to disperse a mineral admixture among binders, which will strengthen the fluidity and strength of concrete. Therefore, this study analyzed the properties of high strength concrete depending on the mix method used, to determine the effect of pre-mix cements ranging from W/B 15 to 35%. It was found that the fluidity of pre-mix increased to a level higher than that of individual mix due to its dispersion and ball bearing effect. The air content was slightly decreased from the result of individual mix due to the micro filler effect, which causes fine particles of silica-fume to fill the voids among cement particles, while the setting time of pre-mix was shorter than that of individual mix, because enhanced dispersion of pre-mix affects hydration heat time. The compressive strength of pre-mix increased due to the phenomenon of compaction of gap structure, and the variation of coefficient decreased by 1.69% on average in strength variation.

Preliminary Study for the Development of Alkali Activated Natural Hwangtoh Binder (알칼리활성 천연황토 결합제 개발을 위한 기초연구)

  • Kim, Baek-Joong;Kim, Jun-Hwan;Yi, Chong-Ku;Kang, Kyung-In
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.389-390
    • /
    • 2010
  • this study is preliminary experimental research for develop methods to utilize the natural Hwangtoh as replacement materials for the cement in concrete, via alkali activation at $60^{\circ}C$ using NaOH solution and liquefied $Na_2SiO_3$ in a manufacture process of Hwangtoh concrete binder.

  • PDF

Study on the Improvement of Strength Capacity for Glulam-to-bolt Connection (집성재 볼트 결합부의 강도 성능 개선에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.31-37
    • /
    • 2005
  • This research investigated the increase in strength capacity for the difference of various connection conditions. Connections were constructed with a main member, glulam and side members, 3 mm steel plates. Connections were varied in the number of inserted 1 mm steel plate. The strength capacity considerably increased by inserting the very thin steel plate within structural glulam connection. Glulam connections were classified as the number of inserted steel plate, group A was none, group B was one, group C was two, and group D was three. Ultimate and design values of the group B were 18% and 13% greater than the group A, the group C were 27% and 20% than the group A, and the group D were 33% and 24% than the group A. However, the increase in strength capacity and the additional difficulty should be considered on economic and technical view.

An experimental study on the properties of white concrete according to the binder composition (결합재 조성에 따른 백색콘크리트의 기초물성에 관한 실험적 연구)

  • Kim, Yong-Ro;Kwon, In-Pyo;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.295-296
    • /
    • 2010
  • In this study, it was investigated basic properties of white concrete according to the binder composition for securing fundamental data for the construction site quality control.

  • PDF

Chloride Diffusion Coefficient at Reference Time for High Performance Concrete for Bridge Pylons in Marine Environment (해상교량 주탑용 고성능 콘크리트의 기준재령 염소이온 확산계수)

  • Yoon, Chul-Soo;Kim, Ki-Hyun;Yang, Woo-Yong;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.435-444
    • /
    • 2012
  • High performance concrete mixes are selected and corresponding test specimens are made for the study of chloride diffusion coefficient at reference time. The concrete mixes were same designs as those used in construction of bridges located in a marine environment. Mix design variables included binder type, water-to-binder ratio, mineral admixtures to total binder weight substitution ratio, fine aggregate source, chemical water reducer admixture type for high strength and high flowability, and target slump or slump flow. The test results showed that the diffusion coefficients at reference time varied significantly according to the type of mineral admixtures and their substitution ratios. A model for diffusion coefficient at reference time considering the type of mineral admixture and the substitution ratio was developed. Diffusion coefficients from the developed model were compared with those from literature review, a previous model, and additional test results. All of the comparisons verified that the developed model can reasonably predict diffusion coefficients and the application of the model to the durability design against chloride penetration is appropriate.

A Study on Environmentally Friendly Soil Pavement Materials Using Weathered Soil and Inorganic Binder (화강풍화토와 무기질 결합재를 활용한 친환경 흙포장에 관한 연구)

  • Jung, Hyuksang;Jang, Cheolho;An, Byungjae;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.25-31
    • /
    • 2009
  • In this study, the problem of existing soil pavement is a long-term durability lack and crack occurrence. It complements in order to develop the environmental soil pavement material which composites readily blended mineral binder of liquid and decomposed granite soils. It was estimated optimal mixture proportion for unconfined compressive strength, permeability, $Cr^{6+}$detection test, SEM test with age, freezing and thawing test. It resulted mixture proportion of powder types mineral binder for rates of cement : fly ash : plaster was optimal rates of 50 : 33 : 7, and $Cr^{6+}$detection test as a result was a slight production. SEM test with 3days as a result was made Ettringite. It was found that this material was early development of early-strength for chemical. This study indicated that it will execute field appliciability Evaluation test, examination of soil pavement method with decomposed granite soils and mineral binder.

  • PDF

Strength Properties of Mortar According to Types of Binders for Reducing Curing Process of Concrete Secondary Products for Reduction CO2 (CO2 절감을 위한 콘크리트 2차제품 양생단계저감용 결합재 종류에 따른 모르타르 강도특성)

  • Kim, Ha-Seog;Baek, Dae-Hyun;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.37-46
    • /
    • 2014
  • Carbon dioxide generated from construction materials and construction material industry among the fields of construction is approximately 67 million tons. It is about 30% of the carbon dioxide generated in the fields of construction. In order to reduce carbon dioxide in the fields of construction, it is necessary to control the use of fossil fuel consumed and decrease carbon emission by reducing the secondary and tertiary curing generating carbon dioxide in construction material industry. Therefore, this study manufactured mortar by having cement as the Plain and substituting three binding materials up to 50% and then adopted different curing methods to analyze congelation and strength characteristics. Test results for strength property by changing binding materials showed that specimens with blast furnace slag, CSA 15% and CAMC 5% resulted in positive effect for strength.