Study on the Improvement of Strength Capacity for Glulam-to-bolt Connection

집성재 볼트 결합부의 강도 성능 개선에 관한 연구

  • Received : 2005.06.30
  • Accepted : 2005.09.23
  • Published : 2005.11.25

Abstract

This research investigated the increase in strength capacity for the difference of various connection conditions. Connections were constructed with a main member, glulam and side members, 3 mm steel plates. Connections were varied in the number of inserted 1 mm steel plate. The strength capacity considerably increased by inserting the very thin steel plate within structural glulam connection. Glulam connections were classified as the number of inserted steel plate, group A was none, group B was one, group C was two, and group D was three. Ultimate and design values of the group B were 18% and 13% greater than the group A, the group C were 27% and 20% than the group A, and the group D were 33% and 24% than the group A. However, the increase in strength capacity and the additional difficulty should be considered on economic and technical view.

본 연구는 각 결합부 조건에 따른 결합부의 강도적 성능 증가를 살펴보고자 하였다. 주 부재로 집성재를, 측면 부재로 3 mm 두께의 강철판을 사용하여 제작하였으며, 1 mm 두께의 강철판을 개수를 달리하여 집성재에 삽입하여 결합부를 제조하였다. 본 연구를 통해 아주 얇은 두께의 강철판이라도 대단면 부재인 집성재 내부에 삽입하여 결합부를 제조할 경우 강도에 상당한 증가를 보였다. 집성재 결합부는 강철판을 삽입하지 않은 A 그룹, 강철판을 1개 삽입한 B 그룹, 강철판을 2개 삽입한 C 그룹, 그리고 강철판을 3개 삽입한 D 그룹으로 각각 분류하였다. 강철판을 삽입하지 않은 A 그룹에 비해 강철판을 1개 삽입한 B 그룹은 최대값과 항복 하중값을 각각 18%, 13%, 강철판을 2개 삽입한 C 그룹은 27%, 20%, 강철판을 3개 삽입한 경우 33%, 24%의 강도 증가를 보였다. 하지만 집성재 내부에 얇은 두께의 강철판을 삽입하는데 필요한 추가적인 경제적 기술적 어려움으로 인해 강철판 삽입으로서 얻을 수 있는 강도적 성능 증가와 그에 따른 어려움을 충분히 고려해야 할 것이다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. 김광철, 이전제. 2000. Analysis of the behavior of bolt jointed wood connections by applying semirigid theory. 목재공학. 28(4): 73-83
  2. 박천영, 김광모, 이전제. 2005. 낙엽송 부재의 이중 전단 볼트 접합부 강도 성능. 33(1): 7-16
  3. American Society for Testing and Materials (ASTM). D 1761. 1995 Edition
  4. American Society for Testing and Materials (ASTM). D 2395. 1995 Edition
  5. American Society for Testing and Materials (ASTM). D 4442. 1995 Edition
  6. American Society for Testing and Materials (ASTM). D 5652. 1995 Edition
  7. Gehri, E., 1997. A steel-to-timber doweled joint of high performance in combination with a high strength wood composite (Parallam). CIB-W18/30-7-4, Vancouver, 1997
  8. Haller, P. and C. J. Natterer, J. 1996. Experimental study on Glass-fibre Reinforced and Densified Timber Joints, Proc. of International Wood Engineering Conference, October 28-31, 1996, New Orleans, Louisiana, USA
  9. Johansen, K. W. 1949. Theory of timber connections. International Association for Bridge and Structural Engineering. 9: 249-262
  10. Mischler, A. 1997. Influence of ductility on the load-carrying capacity of joints with dowel-type fasteners. Paper 30-7-6. CIB-W18, Vancouver, Canada, 1997
  11. Mischler, A. 1998a. 'Design of Joints with Laterally Loaded Dowels' Timber Connection Design Seminar, UBC. October 10, 1998, Vancouver, BC, Canada, 1997
  12. National Design Specification for Wood Construction (NDS). 1997 Edition