• Title/Summary/Keyword: glulam

Search Result 75, Processing Time 0.023 seconds

Shear Performance of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.661-671
    • /
    • 2015
  • To evaluate the shear performance of the textile glass fiber and the sheet glass fiber reinforced glulam bolted connections, a tension type shear test was conducted. The average yield shear strength of the bolted connection of reinforced glulam was increased by 12% ~ 31% compared to the non-reinforced glulam. It was confirmed that the shear performance of 5D end distance of the glass fiber reinforced glulam connection corresponds to that of 7D of the non-reinforced glulam connection proposed in building design requirements in various countries. Compared to the non-reinforced glulam, the average shear strength of textile glass fiber reinforced glulam was markedly increased. The non-reinforced glulam and the GFRP reinforced glulam underwent a momentary splitting fracture. However, the failure mode of textile glass fiber reinforced glulam showed a good ductility.

A Studyof Materials and Structural Designs in the Glulam Architecture -Focusing in the Roof Structure- (집성재건축의 자재특성과 구조디자인 연구 -지붕구조를 중심으로-)

  • 김란기
    • Korean Institute of Interior Design Journal
    • /
    • no.13
    • /
    • pp.203-215
    • /
    • 1997
  • This Study typed the roof-design in analysis of structural design of the glulam architecture, developed worldwidely, nowaday. For this, it is studied the characters of glulam as the history of glulam architectures, manufacture of glulam, shapes and section of glulam, fireproof and combution of glulam. And it is studied roof-design according to structural type of glulam roof-structure. Conclusively, types of glulam roof design typied as 1)the Simple Beam str., 2)the Multi-Joints continous Beam str. 3)the Hinge str. 4)the Rahmen str. 5)the Archi str. 6)the Grid str. 7)etc str. (Folded-plate str., Radial str., Cylinder Shell str., Ring Dome str., Geodesic Dome str., Conic Coloid Shell str., H.P Shell str. Cantilever Shell str.)

  • PDF

Bearing Strength of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.652-660
    • /
    • 2015
  • To study the bearing characteristics of glass fiber reinforced glulam for structural design, bearing strength tests were performed. Bearing loads were applied in the direction parallel to the grains, and the holes were prepared in such a way that the bolts would bear and support all the layers. The yield bearing strengths of the glass fiber reinforced glulam were found to be similar to those of the non-reinforced glulam, and were almost constant regardless of increases in bolt diameter. The ratio of the experimental yield bearing strength to the estimated bearing strength according to the suggested equation of the Korea Building Code and National Design Specification was 0.91~1.03. For the non-reinforced glulam and the sheet glass fiber reinforced plastic glulam, the maximum bearing load was measured according to the splitting fracture of specimens under bolt. The textile glass fiber reinforced glulam underwent only an embedding failure caused by the bearing load. The failure mode of reinforced glulam according to bearing load will influence the failure behavior of bolted connection, and estimating the shear yield strength of the bolted connection of the reinforced glulam is necessary, not only by using the bearing strength characteristics but also using the fracture toughness of the reinforced glulam.

Bending Strength Properties of glulam made from small diameter logs. (소경재를 이용한 통직집성재의 휨강도 특성)

  • 박준철;홍순일
    • Journal of the Korea Furniture Society
    • /
    • v.13 no.2
    • /
    • pp.11-18
    • /
    • 2002
  • This study was carried out to investigate the strength and technical feasibility of glulam from small diameter Pinus densiflora and Larix kaempferi. Small diameter logs are currently not used in structural laminated beam construction, but it is suggested that its properties may be feasible for this purpose. The glulam combinations were designed with high grade laminae located at outer laminations (face) and low grade laminae located at center laminations. Important problems of finger jointed glulam as a structural beam are the small modulus of rupture (MOR). One solution for this problem Mi to use veneer and solid wood as the face laminae. The MOE values were predicted for each beam from laminae. The results showed that actual beam MOE values exceeded slightly the predicted values. Based on the evaluation and analysis of Pinus and Larix glulam, the maximum load of Larix kaempferi glulam indicated large values. The bending properties of A and E types glulam were superior to others. It is suggested that this small diameter log can be a candidate for structural glulam construction, providing the proper combinations of face laminae.

  • PDF

Bending and Bonding Strength Performances of Larix Block-glued Glulam (낙엽송 블록접착집성재의 접착 및 휨 강도 성능)

  • Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.315-322
    • /
    • 2016
  • Block-glued glulam is a structural material that can be used as a construction member of a large-section wooden building, which is produced by edgewise bonding of two or more glulam beam elements. The edgewise bonding performance of the block-glued glulam was examined through delamination test and block shear strength test. According to the test results, the block-glued glulam that was manufactured with 1.5 MPa of compressive pressure after applying $500g/m^2$ of Resorcinol adhesive showed the best edgewise bonding performance. The block-glued glulam produced in a good edgewise bonding condition was compared with a control glulam with the same section modulus for bending strength performance. The modulus of elasticity (MOE) in bending was similar to that of the control glulam. The modulus of rupture (MOR) of the block-glued glulam was higher by 27% than that of the control glulam. No interfacial failure or cohesive failure were observed in the edgewise bonding layer.

Effect of Load Variation on Transition of Neutral Axis of Laminated Veneer Lumber (LVL) (하중(荷重) 변화(變化)가 적층목질재(積層木質材)(Glulam)의 중립축(中立軸)의 위치변이(位置變移)에 미치는 영향(影響))

  • Park, Heon;An, Tae-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.35-44
    • /
    • 1991
  • In this study, thickness 40mm glulams were composed of thickness 5mm, 10mm Quercus laminas and Pinus koraiensis laminas to study on the effect of load variation on transition of neutral axis of laminated veneer lumber(LVL). The transition of neutral axis was examined by strain variation, which was checked by strain gauge. amplifier, recorder, and strain meter. The elasticity of glulam was estimated by E = $\Sigma(E_i\;I_ i)$/I and this estimated elasticity values were compared with the elasticity values of glulam in bending. The result obtained can be summarized as follows: 1. The location of neutral axis of glulam was effected by glulam composition methods 2. The neutral axis did not shift by load variation within proportional limit. 3. The estimated elasticity of glulam by E = $\Sigma(E_i\;I_ i)$/I showed much lower value than the elasticity of glulam in bending.

  • PDF

Bonding Performance of Glulam Reinforced with Textile Type of Glass- and Aramid-Fiber, GFRP and CFRP

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.156-162
    • /
    • 2011
  • To evaluate the bonding performance of reinforced glulam, the textile type of glass fiber and aramid fiber, and the sheet type of glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) were used as reinforcements. The reinforced glulam was manufactured by inserting reinforcement between the outmost and middle lamination of 5ply glulam. The types of adhesives used in this study were polyvinyl acetate resins (MPU500H, and MPU600H), polyurethane resin and resorcinol resin. The block shear strengths of the textile type in glass fiber reinforced glulam using MPU500H and resorcinol resin were higher than 7.1 N/$mm^2$, and these glulams passed the wood failure requirement of Korean standards (KS). In case of the sheet types, GFRP reinforced glulams using MPU500H, polyurethane resin and resorcinol resin, and CFRP reinforced glulams using MPU500H and polyurethane resin passed the requirement of KS. The textile type of glass fiber reinforced glulam using resorcinol resin after water and boiling water soaking passed the delamination requirement of KS. The only GFRP reinforced glulam using MPU500H after water soaking passed the delamination requirement of KS. We conclude that the bonding properties of adhesive according to reinforcements are one of the prime factors to determine the bonding performance of the reinforced glulam.

Study on the Neutral Axis of Glulam and its Mechanical Properties (적층목질재(積層木質材)(Glulam)의 중립축(中立軸)과 강도적(强度的) 성질(性質)에 관한 연구(硏究))

  • Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.42-52
    • /
    • 1990
  • In this study, thick 24mm glulams were composed of thick. 3, 4, 6, 8mm Larch laminas to study that the theoretical analysis and the experimental analysis regarding the location of neutral axis of the glulams were compared, and to study on the effect of location of neutral axis on mechanical properties of glulam. The variation of location of neutral axis after proportional limit(or elastical limit) was studied to offer basic data to make the better composition method of glulam. The result obtained can be summarized as follows: 1. The theoretical neutral axis was 0.547 in solid wood, and also 0.547 in glulams because glulams were composed of only Larch laminas. 2. In solid wood, the deviation of the theoretical and the experimental neutral axis location was 0.1%, But in glulams, the deviation from-12.2% to + 7.8% showed nonuniform pattern but no large deviation. Because laminas was only of Larch and so the mechanical properties of laminas were monotonous. 3. The neutral axis exerted no influance on the elasticity of glulam, which meaned that the maximum shear strength in the neutral axis showed no influance on elasticity limit. 4. The only minutely lower elasticities of glulam than that of solid wood were shown. This was because of influance of glue lines of glulam on the elasticlties. 5. The failure type of glulam was wholly simple tension failure and the horizontal shear failure near neutral axis was not taken place, which was that glue line was complete in bonding and the strength of the lamina was not various but uniform. 6. The ratio of tension strain($^{\varepsilon}t$) I compression strain($^{\varepsilon}c$) initially showed uniform level After the elasticity limit. the ratio was increased with the flow of time and so the tension strain was more increased than compression strain. So this proved tension lamination technique, which is that the mechanical properties of glulam could be improved, if the lamina of more superior strength would he added on the bottom side of the glulam.

  • PDF

Bending Creep of Glulam and Bolted Glulam under Changing Relative Humidity

  • PARK, Junchul;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.676-684
    • /
    • 2020
  • This study was carried out in order to evaluate the bending creep deflection of glulams and bolted glulams beam-to-beam connection with steel-gusset plates and bolts under changing relative humidity. The two types of glulam beams (130 mm in width, 175 mm in thickness, and 3000 mm in length) used in this study were made from domestic larch and composed of seven layers. The gussets were made of 8-mm-thick steel plates. Creep testing was conducted under constant loads in an uncontrolled environment. The test was carried out in a room that was well ventilated through a window. The creep test specimens were loaded for 33,000 hours. A bending creep test for the glulams was conducted through four-point loading. The applied stresses were 20% and 30% of the MOR in the static bending test for the glulam and bolted glulam, respectively. After 33,000 hours, the creep deflection of the glulam at a 20% stress level increased by 39% to 99%, while the creep deflection of the glulam at a 30% stress level increased by 27% to 67%, as compared with instantaneous elastic deflection. The relative creep increased during autumn and winter, and recovered during spring and summer. The relative creep of the bolted glulams was changed abruptly by loading up to 5,000 hours, but stabilized after 5,000 hours, and then gradually increased until 33,000 hours. The relative creep of the bolted glulam increased 2.11 times on average after 33,000 hours.

Properties of Glued Laminated Timber Made from Fast-growing Species with Mangium Tannin and Phenol Resorcinol Formaldehyde Adhesives

  • Hendrik, Jessica;Hadi, Yusuf Sudo;Massijaya, Muh Yusram;Santoso, Adi;Pizzi, Antonio
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.253-264
    • /
    • 2019
  • This study characterized the chemical compounds in tannin from mangium (Acacia mangium) bark extract and determined the physical-mechanical properties of glued laminated timber (glulam) made from sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), and mangium wood. The adhesives used to prepare the glulam were based on mangium tannin and phenol resorcinol formaldehyde resin. Five-layer glulam beams measuring $5cm{\times}6cm{\times}120cm$ in thickness, width, and length, respectively, were made with a glue spread of $280g/m^2$ for each glue line, cold pressing at $10.5kgf/cm^2$ for 4 h and clamping for 20 h. Condensed mangium tannin consisted of 49.08% phenolic compounds with an average molecular weight of 4745. The degree of crystallinity was 14.8%. The Stiasny number was 47.22%. The density and the moisture content of the glulams differed from those of the corresponding solid woods with mangium having the lowest moisture content (9.58%) and the highest density ($0.66g/cm^3$). The modulus of rupture for all glulam beams met the JAS 234-2003 standard but the modulus of elasticity and the shear strength values did not. Glulam beams made with tannin had high delamination under dry and wet conditions, but glulam made from sengon and jabon wood met the standard's requirements. All glulam beams had low formaldehyde emissions and were classified as $F^{****}$ for formaldehyde emissions according to the JAS 234 (2003) standard.