• Title/Summary/Keyword: 건축물에너지

Search Result 551, Processing Time 0.031 seconds

A Study on the Design Technique for Energy Performance Indicators of Existing Office Buildings (기존 오피스건물 에너지성능지표에 따른 설계기법 연구)

  • Jung, Hyungtae;Lee, You Na;Kim, Insoo;Ahn, Jong-Wook
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.28-35
    • /
    • 2018
  • Guidelines and institutional support for buildings are being promoted around the world as measures for environmental pollution and energy conservation. In Korea, standards are prepared according to the energy saving design standards of new buildings as amended in 2013.09.01 and the zero energy building for new buildings mandatory process is being prepared from the recommendations. Nevertheless, the government's binding power on smaller buildings is insufficient. Energy savings were analyzed for the recently constructed office buildings (application of external insulation technique) and propose a dual envelope techniques were proposed for energy reduction.

Sensitivity Analysis of Building Envelope of Non-Dwelling Buildings (비주거 건축물의 외피요소에 대한 민감도 분석)

  • Kim, Kyung-Ah;Park, Jin-Seo;Yu, Ki-Hyung;Moon, Hyeun-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • The ECO2 building energy simulation program is used on the assessment project for building energy certification of non-dwelling buildings in Korea. In the design of energy efficient buildings, it is beneficial to identify the most important design parameters in oder to more efficiently develop alternative design solutions or reach optimized design solutions. The sensitivity analyses will be used at a reasonable early stage of the building design process, where it is still possible to influence the most important design parameters. In this study, the sensitivity analysis is focused on building envelope parameters such as U-values, SHGC and Wall-window ration.

FEATURE - A Right Understanding of an Energy-saving Standard for Architectural Design (기고 - 건축물의 에너지절약 설계기준의 바른 이해)

  • Roh, Sung-yeal
    • Korean Architects
    • /
    • s.466
    • /
    • pp.79-88
    • /
    • 2008
  • 건설교통부 서울지방국토관리청(청장 한기선)에서는 지난 한 해 동안 수도권에 건설 중인 아파트 등 다중이용건축물의 부실시공 방지를 위해 시공실태점검과 기술자교육 등을 실시하고 있으나, 에너지절약 부분에 있어서는 관련법령에 미달되게 적용하는 사례가 반복 지적되고 있어, 설계자에 대한 관련 기준의 바른 이해에 도움이 되고자 알려 드립니다.

  • PDF

Water and energy partitioning of catchments under various climatic conditions (다양한 기후조건에 따른 유역에서의 물과 에너지 분배)

  • Sanghyun Yoo;Kyungrock Paik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.103-103
    • /
    • 2023
  • 질량 및 에너지 보존 법칙은 수문현상을 포함한 자연 현상의 기본 법칙이다. 유역에서 물의 질량 보존은 강수량 P가 유출량 Q, 증발산량 E, 그리고 육역저수량변화 ΔS로 분할되는 것(P=Q+E+ΔS)을 의미하며 열 에너지 보존은 순복사에너지 Rn이 잠열 λE, 현열 H, 그리고 지열 G로 분할되는 것(Rn=λE+H+G)을 의미한다. 유역에서 물과 에너지의 분배 과정은 E로 연결되어 있으며 이 두 과정을 포괄적으로 이해하는 것은 기후 및 지표환경의 변화를 예측하고 대비하는데 중요하다. 이 연구에서는 미국 전역의 400여개 유역에 대한 정보를 제공하는 Model Parameter Estimation Project(MOPEX) 데이터를 이용하여 유역의 기후 조건에 따라 물과 에너지의 분배가 어떻게 달라지는지 Budyko 평면에서 분석했다. 장기간에 대해 ΔS와 G는 무시할 수 있다는 가정하에 건조한 유역일수록 P, Q, 그리고 E 모두 작게 나타나는데 P와 Q의 감소폭이 훨씬 크기 때문에 E의 P에 대한 비는 크게 나타났다. 또한 건조한 유역일수록 E는 작고 Rn이 크기 때문에 H가 크게 나타났으며 H가 큰 유역일 수록 유역의 최대 기온과 최저 기온의 차이가 크게 나타났다. 이러한 변화는 동일한 유역내에서 물과 에너지 분배의 시간적 변화로도 나타나고 있다.

  • PDF

A Study on Development of Independent Low Power IoT Sensor Module for Zero Energy Buildings (제로 에너지 건축물을 위한 자립형 저전력 IoT 센서 모듈 개발에 대한 연구)

  • Kang, Ja-Yoon;Cho, Young-Chan;Kim, Hee-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.273-281
    • /
    • 2019
  • The energy consumed by buildings among the total national energy consumption is more than 10% of the total. For this reason, Korea has adopted the zero energy building policy since 2025, and research on the energy saving technology of buildings has been demanded. Analysis of buildings' energy consumption patterns shows that lighting, heating and cooling energy account for more than 60% of total energy consumption, which is directly related to solar power acquisition and window opening and closing operation. In this paper, we have developed a low - power IoT sensor module for window system to transfer acquired information to building energy management system. This module transmits the external environment and window opening / closing status information to the building energy management system in real time, and constructs the network to actively take energy saving measures. The power used in the module is designed as an independent power source using solar power among the harvest energy. The topology of the power supply is a Buck converter, which is charged at 4V to the lithium ion battery through MPPT control, and the efficiency is about 85.87%. Communication is configured to be able to transmit in real time by applying WiFi. In order to reduce the power consumption of the module, we analyzed the hardware and software aspects and implemented a low power IoT sensor module.

Market Acceptability of the ZEB Certification System for Public Buildings According to the 2025 Roadmap (2025년 의무화 로드맵에 따른 공공시설 제로에너지건축물 인증제도 시장 수용성)

  • Lee, Seung-Min;Kim, Jin-Ho;Shin, Gwang-Su;Kim, Eui-Jong
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.557-566
    • /
    • 2018
  • The ZEB certification system has come into effect since 2018 according to the ZEB road map. From 2020, the public buildings with the total floor area smaller than $3000m^2$ are the target of the certification, and it will be extended to the buildings with up to $5000m^2$ floor area in 2025. However, current mandatory regulations for public office buildings seem already to meet the ZEB certification system planned for 2025. In this work, two buildings belong to $3,000{\sim}5,000m^2$ in total floor area were selected to analyze the possibility of meeting the ZEB certification only by following current obligation regulations. Results showed that the test buildings satisfied the minimum building energy efficiency and energy self-sufficiency rates for the ZEB certification when the mandatory insulation and installation ratio of renewable energy are applied. This can be useful for revising the road map or extending the target buildings of the ZEB certification.

Evaluation of Life Cycle Energy Consumption and CO2 Emission of Elementary School of Buildings (초등학교 건축물의 생애주기 에너지사용량 및 이산화탄소 배출량 평가)

  • Ji, Changyoon;Hong, Taehoon;Jeong, Jaewook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.52-60
    • /
    • 2016
  • This study investigates and analyzes the total amount of energy consumption and $CO_2$ emission during the material manufacturing, transportation, construction, operation, and disposal phases of eight elementary school buildings in South Korea. Toward this ends, the hybrid LCA model is proposed. The life cycle energy consumption and $CO_2$ emission of eight case buildings are assessed using the hybrid LCA model with an assumption that the operation period is 40 years. As a result, the embodied(sum of the energy consumption in the material manufacturing, transportation and construction phases), operational and disposal energy were 2,279, 11,182, $228Mcal/m^2$, respectively, on average. The average embodied, operational, and disposal $CO_2$ emission were 604, 2,708, 60 kg-$CO_2/m^2$, respectively, on average. This result indicates that about 17% of life cycle energy (or $CO_2$ emission) is consumed in the material manufacturing, transportation and construction phases. Thus, it is necessary to consider the embodied energy and $CO_2$ emission to reduce the life cycle energy and $CO_2$ emission of school buildings. In addition, while the insulation standard of building have been provided based on the climate zone, energy consumption in operation phase still varied depending on the regions in this study. Thus, the insulation standard of building needs to be improved through considering the climate of regions in detail.

3D Thermo-Spatial Modeling Using Drone Thermal Infrared Images (드론 열적외선 영상을 이용한 3차원 열공간 모델링)

  • Shin, Young Ha;Sohn, Kyung Wahn;Lim, SooBong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • Systematic and continuous monitoring and management of the energy consumption of buildings are important for estimating building energy efficiency, and ultimately aim to cope with climate change and establish effective policies for environment, and energy supply and demand policies. Globally, buildings consume 36% of total energy and account for 39% of carbon dioxide emissions. The purpose of this study is to generate three-dimensional thermo-spatial building models with photogrammetric technique using drone TIR (Thermal Infrared) images to measure the temperature emitted from a building, that is essential for the building energy rating system. The aerial triangulation was performed with both optical and TIR images taken from the sensor mounted on the drone, and the accuracy of the models was analyzed. In addition, the thermo-spatial models of temperature distribution of the buildings in three-dimension were visualized. Although shape of the objects 3D building modeling is relatively inaccurate as the spatial and radiometric resolution of the TIR images are lower than that of optical images, TIR imagery could be used effectively to measure the thermal energy of the buildings based on spatial information. This paper could be meaningful to present extension of photogrammetry to various application. The energy consumption could be quantitatively estimated using the temperature emitted from the individual buildings that eventually would be uses as essential information for building energy efficiency rating system.

플로팅 건축물 창호의 개방감 평가를 위한 사례 연구

  • Kim, Ik-Hyeon;Do, Geun-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.283-284
    • /
    • 2013
  • 플로팅 건축물은 일반 건축물과 달리 광활한 수상에 위치하며 따라서 개구부를 통해 보이는 조망에 의해 재실자의 거주 만족도를 크게 높일 수 있다. 그러나 바다라는 특수한 환경에 노출되어 있기 때문에 육상에 비해 외부 기후환경에 많은 영향을 받으며 특히 창호 등의 외장재는 비교적 높은 열관류율과 낮은 강도로 인해 무분별한 확장을 실행할 경우 실내 냉 난방에너지 소비가 증대와 태풍 및 월파 등으로 인한 인명 재산 피해를 초래할 수 있다. 본 논문에서는 플로팅 건축물에서 대부분의 재실자가 충분한 만족을 느낄 수 있는 창호 크기의 범위를 알아내기 위해서 일반 건축물의 조망 및 실내 개방감 평가에 관련된 국내외 연구의 사례를 조사하고 플로팅 건축물에서의 적용 방안에 대해 연구하였으며 그 결과 인체의 시야각을 이용해 내부 공간에서의 개방감을 측정하는 방법과 실물 축소모형을 이용해 개방감을 측정하는 방법을 제시하였다.

  • PDF

An Analysis on Current Status of Certification for Green Building Revitalization in School - Focused on the School Located in Gyeonggi-do Province - (학교시설의 녹색건축 활성화를 위한 인증현황 분석 연구 - 경기도 학교시설을 중심으로 -)

  • Kim, Jang-Young;Kim, Sung-Joong;Lee, Seung-Min
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.14 no.3
    • /
    • pp.9-17
    • /
    • 2015
  • In this paper, there are several analysis on G-SEED, Building Energy Efficiency Rating System, Energy Performance Index, Energy Saving Plan about how they are applied by classification and planning standard. The analysis result found out that G-SEED has low select percentage by having difficulties to managing and additional cost when the each class is selected. And also, Building Energy Efficiency Rating System in school is planed in comparably simple design and similar size and also mostly uses high efficient machines, which was in high lever comparing to the system in facilities in other uses. In the case of EPI, there are differences on acquiring grades by each region. Especially, Gyung-gi region has a low grade on architecture part comparing to other parts, which seems to acquire more grades by strengthen insulation performance. By the result from the three standards, many facilities has only formal plan to pass the required standard without considering specialities of each buildings, which has a tendency to have a pattern to have a minimum criteria. However, School has a symbolic building which has a obligation to be the base of the aim for growing green energy buildings and green education for students. Therefore, planning with understanding of specialities of the facility, having various and rational evaluation standards from the planning of the building is necessary.