• Title/Summary/Keyword: 건설부산물

Search Result 212, Processing Time 0.026 seconds

Material Performance Evaluation of Ceramic Fiber Reinforced Concrete using Energetically Modified Industrial By-products (산업부산물의 활성분체 및 세라믹섬유 혼입 콘크리트의 재료성능 평가)

  • Choi, Seung Jai;Yang, Dal Hun;Lee, Tae Hee;Kim, Jang Ho Jay
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.118-124
    • /
    • 2018
  • Social infrastructures and industrial complexes have been actively constructed in South Korea since the 1960 s as part of the economic development plan, resulting in rapid industrialization. However, side-effects due to the industrialization have occurred. An increase in industrial by-products or wastes is a typical problem. Although some industrial by-products are recycled in Korea as well as worldwide, some wastes are landfilled or dumped in the sea. Although many researchers have executed various technologies for the disposal of industrial wastes, economic and environmental technologies have not been developed. Thus, this study aims to activate paper and fly ashes during the crush process to overcome the drawback of simple concrete mixed with paper and fly ashes, which cause a reduction in workability and strength, derive an optimal content and replacement ratio of concretes mixed with Energetically Modified Material (EMM), and evaluate the material performance. In addition, the basalt fiber is mixed simultaneously to achieve the reduction of cracks and improve the tensile strength.

Characteristics of Drying and Autogeneous Shrinkage in HPC with 65% Replacement of GGBFS (고로슬래그 미분말을 65% 치환한 고성능 콘크리트의 자기 및 건조수축 특성)

  • Jang, Seung-Yup;Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.54-59
    • /
    • 2017
  • GGBFS (Ground Granulated Blast Furnace Slag) is a byproduct with engineering advantages and HVSC (High Volume Slag Concrete) is widely attempted due to active utilization and reduction of eco-load. In the present work, characteristics of drying shrinkage and early-aged behavior are evaluated for the concrete with 65% replacement ratio of GGBFS and 50MPa of design strength. For the work, 3 different mix conditions are considered and several tests including slump flow, compressive strength, drying and autogeneous shrinkage are performed. From the test, OPC 100 mixture without replacement shows higher strength development before 7 days, however the strength reduction in concrete replaced with GGBFS is not significant due to sufficient free water for cement hydration. OPC 100 mixture also shows significant drying shrinkage due to a great autogeneous shrinkage before 3 days. In the concrete with GGBFS replacement, the drying shrinkage behavior is improved due to relatively small deformation by autogeneous shrinkage. The mixture (OPT BS 65) with lower w/b ratio (0.27) and unit content of water ($160kg/m^3$) shows more improved shrinkage behavior than BS 65 mixture which has simple replacement of GGBFS with 0.30 of w/b and $165kg/m^3$ of water unit content.

A Study on the Reinforcement Effect Analysis of Aging Reservoir using Grout Material recycled Power Plant Byproduct (발전부산물을 재활용한 그라우트재의 노후 저수지 보강효과 분석에 관한 연구)

  • Seo, Se-Gwan;An, Jong-Hwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.23-33
    • /
    • 2021
  • In Korea, many reservoirs have been built for the purpose of solving the food shortage problem and supplying agricultural water. However, the current 75.6% of the reservoirs are in serious aged as more than 50 years have passed since the year of construction. In the case of such an aging reservoir, the stability due to scour and erosion inside the reservoir is very reduced, and if concentrated rainfall due to recent abnormal weather occurs, the aging reservoir may collapse, leading to a lot of damage to property and human life. Accordingly, each agency that manages aging reservoirs uses Ordinary Portland Cement (OPC) as an injection material and applies the grouting method. However, in the case of OPC, it may deteriorate over time and water leakage may occur again. And there are environmental problems such as consumption of natural resources and generation of greenhouse gases. So, there is a need to develop new materials and methods that can replace the OPC. In this study, an laboratory test and analysis were performed on the grout material developed to induce a curing reaction similar to that of OPC by recycling power plant byproduct. In addition, test in the field such as electric resistivity survey, Standard Penetration Test (SPT), and field permeability test were performed to analyzed to reinforcement effect and determine the possibility of using instead of OPC. As a results of the test, in the case of recycled power plant byproduct, the compressive strength was 2.9 to 3.2 times and the deformation modulus was 2.3 to 3.3 times higher, indicating that it is excellent in strength and can be used instead of OPC. And it was analyzed that the N value of the reservoir was increased by 1~2, and the coefficient of permeability (k) decreased to the level of 8.9~42.5%. showing sufficient reinforcing effect in terms of order.

Evaluation of Dispersion Characteristics for Liquefied Red Mud by Viscosity and Sediment Index (점도 및 침전지수에 의한 액상화 레드머드의 분산 특성평가)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.517-525
    • /
    • 2017
  • Red mud is an industrial by-product produced during the manufacturing aluminum hydroxide ($Al(OH)_3$) and aluminum oxide($Al_2O_3$) from Bauxite ores. In Korea, approximately 2 tons of red mud in a sludge form with 50% moisture content is produced when 1ton of $Al_2O_3$ is produced through the Bayer process. In the paper, dispersion characteristics of liquefied red mud that does not require heating and grinding process for recycling were investigated through viscosity and sediment index. The results showed that the sediment index of liquefied red mud increased but viscosity of that decreased with a higher W/R ratio. Also we proposed the range of initial viscosity from 2000cP to 8000cP and target sedimentation index below 20% at elapsed time 180days for stable dispersion of liquefied red mud.

A Case Study on Operation of Off-Gas Treatment System of Radioactive Waste Vitrification Facility (방사성폐기물 유리화설비의 배기가스 처리계통 운영 사례 연구)

  • Lee, Hye Hyun;Park, Kyu Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.249-254
    • /
    • 2016
  • In this study, we investigated the main characteristics of off-gas generated from melting process and off-gas treatment system operation example to provide some primary data for commercial vitrification facility design. The purpose of vitrification facility operation is to treat hazardous materials in the radioactive wastes and harmful off-gas containing a variety of chemical species generated in the glass melting process. Constructing and operating vitrification facility essentially need to be licensed through safety analysis; it is very important to treat radionuclide and hazardous materials below the legal environment emissions regulation level. We must accurately understand the characteristics of off-gas and apply an appropriate off-gas treatment process accordingly. Thus, to design the appropriate off-gas treatment there must be a wide range of elements taken into account such as characteristics of waste and melter, regulation guidance of off-gas, characteristics of generated off-gas and off-gas treatment system performance assessment.

Mechanical Properties and Durability of Concrete Incorporating Air-Cooled Slag (서냉슬래그 미분말을 적용한 콘크리트의 역학적 성능 및 내구성 평가)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.356-363
    • /
    • 2017
  • Blast furnace slag(BFS) is a by-product generated during the manufacture of pig ion, and is divided into water-cooled slag(WS) and air-cooled slag(AS) by the coking method of BFS. In this study, concrete specimens with ternary binders were produced at the various replacement levels of cement by AS. Various mechanical properties of concrete, such as compressive and split tensile strengths, absorption and water permeable pore, were measured. In addition, the chloride ions penetration resistance and carbonation resistance were tested to evaluate the durability of concrete incorporating AS. The experimental data indicated that the use of AS up to a maximum of 10% replacement level enhanced the concrete performance. However, a higher replacement of AS exhibited poor mechanical properties and concrete durability.

3D Printed Building Technology using Recycling Materials (리사이클링 원료를 사용한 건축용 3D 프린팅 기술 동향)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Ahn, Ji-Whan;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.3-13
    • /
    • 2018
  • 3D printing, also known as Additive Manufacturing (AM), is being positioned as a new business model of revolutionizing paradigms of existing industries. Launched in early 2000, 3D printing technology for architecture has also advanced rapidly in association with machinery and electronics technologies mostly in the United States and Europe. However, 3D printing systems for architecture require different mechanical characteristics from those of cement/concrete raw materials used in existing construction methods. Accordingly, in order to increase utilization of raw materials produced in the cement and resource recycling industry, it is necessary to develop materials processing and utilization technology, to secure new property evaluation and testing methods, and to secure database related to environmental stability for a long period which aims to reflect characteristics of an architectural 3D printing technology.

A Study on the Evaluation of the Durability of Concrete Using Copper Slag Aggregates (동슬래그 골재를 함유한 콘크리트의 내구성 평가 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.773-784
    • /
    • 2008
  • Even if the exploitation of copper slag produced during the smelting process of copper as aggregate for construction purpose has been permitted since 2004 in Korea, the lack of sufficient data enabling to evaluate its long-term stability that is its durability has to date impeded its application. This study intends to investigate experimentally the durability characteristics of 18 and 27 MPa-class commercial concretes in which natural sand (fine aggregates) has been partially replaced by copper slag through accelerated and exposure tests so as to provide bases promoting the application of copper slag concrete. The experimental results revealed insignificant difference of the durability characteristics in most of the mix proportions in which 30% of natural sand was replaced by copper slag. In the case where crushed sand was adopted, tests verified similar characteristics for replacement ratio of 50%. Particularly, the results of the exposure test conducted during 8 years demonstrated that equivalent level of durability was secured compared to the case using natural sand. In the case of 18MPa-class lower grade concrete, exposure test verified also that the physical lifetime similar to 50 years could be secured until carbonation reaches cover depth of 20 mm.

Effect of Pretreatment of Mine Tailings on the Performance of Controlled Low Strength Materials (저강도 고유동 충전재의 성능에 미치는 광미 전처리의 영향)

  • Tafesse, Million;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.32-38
    • /
    • 2017
  • For the massive recycling of mine tailings, which are an inorganic by-product of mining process, in the field of civil engineering, pretreatments to extract heavy metals are required. This study focuses on the use of pre-treated tailings as substitute fillers for controlled low-strength material (CLSM). As a comparative study, untreated tailing, microwave-treated tailing and magnetic separated with microwaved tailing were used in this study. Cement contents amounting to 10%, 20% and 30% by the weight of the tailings were designed. Both compressive strength and flowability for all types of mixture were satisfied with the requirements of the American Concrete Institute (ACI) Committee 229, i.e., 0.3-8.3 MPa of compressive strength and longer than 200 mm flowability. Furthermore, all mixtures showed settlements less than 1% by volume of the mix.

A Performance Evaluation of Concrete for Low-carbon Eco-friendly PC Box for Near-surface Transit System (저심도 철도시스템 구축을 위한 저탄소 친환경 PC 박스용 콘크리트의 성능 평가)

  • Koh, Tae-Hoon;Ha, Min-Kook;Jung, Ho-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3587-3595
    • /
    • 2015
  • Low-carbon eco-friendly precast concrete (PC) box structure has been recently was developed as an low-cost infrastructure of near-surface transit system. The concrete of PC box was manufactured by industrial byproducts such as ground granulated blast furnace (GGBF) slag, flyash and rapid-cooling electric arc furnace (EAF) oxidizing slag, its mechanical property and durability were estimated in this study. Based on the mechanical and durability tests, it is found that low-carbon eco-friendly concrete shows high initial compressive strength, more than 90% of design strength (35MPa), and high resistance to salt-attack, chemical- attack and freeze-thaw. Therefore, low-carbon eco-friendly PC box concrete technology is expected to contribute to the railway with low environmental impact.