• Title/Summary/Keyword: 강우자료

Search Result 2,851, Processing Time 0.031 seconds

Hydrological impact of Atmospheric River landfall on the Korean Peninsula (Atmospheric River의 한반도 수문학적 영향에 대한 연구)

  • Han, Heechan;Choi, Changhyun;Moon, Heyjin;Jung, Jaewon;Lee, Choongke;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.1039-1047
    • /
    • 2020
  • Atmospheric rivers, which transport large amount of water vapor from mid-latitude to the inland, are an important driving force of water cycle and extreme hydrologic phenomenas. The main objective of this study is to analyze the hydrological impact of the AR landfalls on the Korean Peninsula in 2000 - 2015. The result showed that the AR is closely related to the characteristics of precipitation, water level and runoff in the Korean Peninsula. The landfalls of the AR affected about 57% of annual precipitation on the Korean Peninsula, and had a greatest impact on the summer rainfall. It also affected the water level and runoff at the five major rivers of Korea, and water levels exceeding the thresholds of flood warning were observed when the AR landed. Moreover, it was found that the runoff above the third quartile with AR landfalls. These results suggest that the AR not only has a significant influence on the hydrological characteristics of the Korean Peninsula, but also have a close relationship with the extreme hydrological events like floods. The results of this study are expected to be used as the reference for the analysis of the impact of the AR on the various fields in the Korean Peninsula.

Thermal Characteristics of Waste Organic Sludges Discharged from an Chemical Product Manufacturing Industry (화학제품제조업에서 배출되는 폐 유기성슬러지의 열적 특성)

  • Kim, Min-Choul;Lee, Gang-Woo;Lee, Man-Sig;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1745-1753
    • /
    • 2008
  • We analyzed the physical and chemical properties such as proximate analysis, ultimate analysis, heating values, thermogravimetric analysis, and combustion test for the organic sludge discharged from chemical and petrochemical product manufacturing industries in the industrial complex. The average combustible and ash content of organic sludges from chemical and petrochemical product manufacturing industries were 17.42%, 7.45%, and 18.25%, 4.22%, respectively. The C, H, O, N, and S compositions for chemical and petrochemical product manufacturing industries were 33.06, 4.34, 24.81, 5.18, and 0.72%. And those compositions for petrochemical product manufacturing industries were 36.58, 4.74, 26.79, 5.09, and 0.49%, respectively. From the TGA test, the minimum temperature for combustion of the sludge discharged from B company was $700^{\circ}C$ for direct use for energy and 2 sludges(F and N companies) were about $600^{\circ}C$. According to the basic combustion test, high concentration of CO was formed because oxidation and pyrolysis reaction take place in the batch type reactor at the same time. From this phenomena we could obtain the significant data for the overheating and breakage of furnace.

Analysis of Climatic Factors during Growing Period of High-Quality Oak Mushroom(Lentinus edodes(Berk) Sing) (고품질 표고 생산 지역의 버섯 생산기간중 기후 분석)

  • 손정익;최원석
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.115-119
    • /
    • 2000
  • Oak mushroom(Lentinus edoes(Berk) Sing) is one of the most important edible mushrooms, and its production has been rapidly increased due to nutritional and medicinal effects. In this study, climatic factors during the growing period of high-quality oak mushroom were analyzed and environmental factors affecting the quality of oak mushroom were discussed. Three places(Changheung, Puyo and Wonj) as mass producing areas of high-quality oak mushrooms and the 15 days of the growing period in 1997-1998 were selected. Major climatic factors for analysis were average air temperature, average relative humidity, ranges of daily air temperature, relative humidity, and wind speed. During the period, th daily average air temperature was $7~20^{\circ}C$ with the diurnal air temperature($7~20^{\circ}C$) and nocturnal air temperature($0~-2^{\circ}C$). The relative humidity ranged between 50 and 70% with the range of daily relative humidity(40~60%). Wind velocity was 1~4m.$s^{-1}$, From the results, it is concluded that the growing environmental conditions for high-quality oak mushroom differed from the optimum conditions for the high productivity of oak mushroom; environmental conditions such as wide ranges of air temperature and relative humidity, low humidity and wind speed might affect the emergence of high-quality oak mushroom.

  • PDF

Seasonal Characteristics of Pore Development and Hydraulic Properties of Surface Soil in Two Forested Watershed (두 산림유역의 표층 토양의 공극 발달과 수리학적 성질의 계절적 특성)

  • Joo, Sung-Hyo;Gwak, Yong-Seok;Kim, Su-Jin;Kim, Joon;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.151-161
    • /
    • 2009
  • Configuration of soil hydraulic property is an essential component to understand the hydrological processes at the hillslope scale. In this study, we investigated temporal variations in pore development and soil hydraulic properties during the period from March to October in 2008. Characteristics for macropore flow and hydraulic conductivity were measured at two hillslopes: one is the hillslope located at the Buprunsa in Sulmachun watershed, and the other is the hillslope located in Gwangneung Research Forest. Vertical fluxes through macropore were measured using a tension infiltrometer at the depth of surface. The saturated hydraulic conductivities in March, June, July and September were relatively high compared to those in May and October. Temporal variations in several soil hydraulic features could be explained by the differences in vegetation activity and soil moisture content determined by antecedent precipitation. Particularly, the features of macropores had a substantial impact on hydraulic conductivity in the forest hillslope. The temporal nonuniformity of the soil hydraulic properties observed in this study manifests the dynamic features of hydrological processes in the hillslope scale and the experimental results will be useful to understand the internal hydrological processes in the mountainous hillslope.

Analysis of GIUH Model by Using GIS in River Basin (하천유역에서 GIS를 이용한 GIUH 모형의 해석)

  • Heo, Chang-Hwan;Lee, Sun-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.321-330
    • /
    • 2002
  • This study aims at the analysis of the geomorphological instantaneous unit hydrograph model (GIS-GIUH) with geographic information system for the rainfall-runoff analysis of watershed which is ungaged or doesn't have sufficient hydrologic data. The rainfall-runoff analysis was performed in Wi stream(Dongkok, Koro, Miseung, Byeungchun, Hyoreung, Museung) which is a representative experimental river basin of IHP. In the process of analysis of the GIUH model, developed GIS-GIUH model and Rosso-GIUH model were applied the study basin and computed hydrographs by these models were compared with observed hydrograph. The GiS-GIUH model shows more closely to the observed hydrograph than Rosso-GIUH model in the peak discharge of the hydrograph. For the development of the GIS-GIUH model, Gamma function factor N was given by N=3.25( $R_{B}$/ $R_{A}$)$^{0.126}$ $R_{L}$$^{-0.055}$, which is the relation of the watershed geomorphological factor, K was also obtained as K=1.50( $R_{A}$/( $R_{B}$. $R_{L}$))/$^{0.10}$.(( $L_{{\Omega}}$+ $L_{{\Omega}-1}$)/V)$^{0.37}$. As the results of analysis, it was found that GIS-GIUH model can be applied to an ungaged watersheds.eds.

Value of Ensemble Streamflow Forecasts for Reservoir Operations during the Drawdown Period (이수기 저수지 운영을 위한 앙상블 유량예측의 효용성)

  • Eum, Hyung-Il;Ko, Ick-Hwan;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.187-198
    • /
    • 2006
  • Korea Water Resources Corporation(KOWACO) has developed the Integrated Real-time Water Management System(IRWMS) that calculates monthly optimal ending target storages by using Sampling Stochastic Dynamic Programming(SSDP) with Ensemble Streamflow Prediction(ESP) running on the $1^{st}$ day of each month. This system, however, has a shortcoming: it cannot reflect the hydrolmeteorologic variations in the middle of the month. To overcome this drawback, in this study updated ESP forecasts three times each month by using the observed precipitation series from the $1^{st}$ day of the month to the forecast day and the historical precipitation ensemble for the remaining days. The improved accuracy and its effect on the reservoir operations were quantified as a result. SSDP/ESP21 that reflects within-a-month hydrolmeteorologic states saves $1\;X\;10^6\;m^3$ in water shortage on average than SSDP/ESP01. In addition, the simulation result demonstrated that the effect of ESP accuracy on the reduction of water shortage became more important when the total runoff was low during the drawdown period.

Comparison of Runoff Models for Small River Basins (소하천 유역에서의 유출해석모형 비교)

  • 강인식
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.209-221
    • /
    • 1996
  • It may be difficult to make exact estimates of peak discharge or runoff depth of a flood and to establish the proper measurement for the flood protection since water stages or discharges have been rarely measured at small river basins in Korea. Three small catchments in the Su-Young river basin in Pusan were selected for the study areas. Various runoff parameters for the study areas were determined, and runoff analyses were performed using three different runoff models available in literatures; the storage function method, the discrete, linear, input-output model, and the linear reservoir model. The hydrographs calculated by three different methods showed good agreement with the observed flood hydrographs, indicating that the models selected are all capable of sucessfully modeling the flood events for small watersheds. The storage function method gave the best results in spite of its weakness that it could not be applicable to small floods, while the linear reservoir model was found to provide relatively good results with less parameters. The capabilities of simulating flood hydrographs were also evaluated based on the effective rainfall from the storage function parameters, the $\Phi$-index method, and the constant percentage method. For the On-Cheon stream watershed, the storage function parameters provided better estimates of effective rainfall for regenerating flood hydrographs than any others considered in the study. The $\Phi$-index method, however, resulted in better estimates of effective rainfall for the other two study areas.

  • PDF

Case study: Runoff analysis of a mountain wetland using water balance method (물수지 방법을 이용한 산지습지의 유출 변동성 분석 - 금정산 장군습지를 대상으로 -)

  • Oh, Seunghyun;Kim, Jungwook;Chae, Myung-Byung;Bae, Younghye;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.210-218
    • /
    • 2018
  • It is very important to analyze water balance in the mountain wetland for the sustainable management of the wetland. In this study, the SWAT model was used to analyze the water balance of Janggun wetland located in Geumjeong mountain of Gyungnam province, Korea. The data such as rainfall and water level measured in Janggun wetland were used for water balance analysis and from the analysis we have known that the rainfall of 10mm within 8 days is required for maintaining an appropriate water level in Janggun wetland. Also, water balance analysis in the wetland for the period of 2009 to 2017 was performed by using hydro-meteorological data obtained from Yangsan weather station which is located around Janggun wetland. From the analysis results, we have known that the amount of rainfall was relatively small in 2010, 2012 and 2015 and water shortage was occurred in the wetland. Especially, water shortage was occurred during the summer that we had intensive rainfall for very short time and faster removal of the runoff from the wetland. Therefore, we may need extend water courses from a wetland watershed to the wetland for preventing land-forming of the wetland and also store water by banking up the wetland for preventing the decrease of water level in the wetland.

Evaluation of the Clark Unit Hydrograph Parameters Depending on Basin and Meteorological Condition: 2. Estimation of Parameter Variability (유역 및 기상상태를 고려한 Clark 단위도의 매개변수 평가: 2. 매개변수의 변동성 추정)

  • Yoo, Chul-Sang;Lee, Ji-Ho;Kim, Kee-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.171-182
    • /
    • 2007
  • In this study, as a method for decreasing the confidence interval of the estimates of Clark hydrograph's concentration time and storage coefficient, regression equations of these parameters with respect to those of rainfall, meteorology, and basin characteristics are derived and analyzed using the Monte Carlo simulation technique. The results are also reviewed by comparing them with those derived by applying the Bootstrap technique and empirical equations. Results derived from this research are summarized as follows. (1) Even in case of limited rainfall events are available, it is possible to estimate the mean runoff characteristics by considering the affecting factors to runoff characteristics. (2) It is also possible to use the Monte Carlo simulation technique for estimating and evaluating the confidence intervals for concentration time and storage coefficient. The confidence intervals estimated in this study were found much narrower than those of Yoo et al. (2006). (3) A supporting result could also be derived using the Bootstrap technique. However, at least 20 independent rainfall events are necessary to get a rather significant result for concentration time and storage coefficient. (4) No empirical equations are found to be properly applicable for the study basin. However, empirical equations like the Kraven(I) and Kraven(II) are found valid for the estimation of concentration time, on the other hand the Linsley is found valid for the storage coefficient In this study basin. But users of these empirical formula should be careful as these also provide a wide range of possible values.

The Characteristics of Probable Maximum Flood on Wi Stream Watersheds (위천유역(渭川流域)의 가능최대홍수량(可能最大洪水量) 특성(特性))

  • Choi, Kyung-Sook;Suh, Seung-Duk
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.37-44
    • /
    • 1998
  • The estimation of PMP (Probable Maximum Precipitation) and the analysis of characteristics of PMF (Probable Maximum Flood) according to the types of time distribution of rainfall and variations of base flow for the determination of design flood of major hydraulic structures in the watershed area of Wi stream were analysed. The PMP was estimated by the hydro-meteorological method suggested by the guideline of the World Meteorological Organization(WMO). The Blocking method was cited to transpose from PMP to PMS (Probable Maximum Storm) with time distribution. The unit hydrograph, applied for the estimation of PMF was derived by Clark's method. The summaryzed results : (1) The 72 hrs duration PMP in the area is 477.3mm which is 80mm less than the PMP map in Korea and 134 mm lager than the maximum precipitation of 342.9mm in Taegu, near the Wi stream watershed. (2) According to the types of time distribution and variations of base flow, the ranges of PMF for advanced type, central type and delayed type are 3,145.3~3,348.3cms, 3,774.6~3,977.7cms and 3,814.6~4,017.3cms, respectively. Those mean that peak discharge of advanced type is 600cms less than the central type and delayed type. (3) Delayed type among three types by Blocking method has been estimated the largest PMF of 4,017.3cms, and the advanced type has been estimated the smallest PMF of 3,145.3cms. The mean value of the peak PMF of 3,653.6cms may probably be resonable PMF in the Wi stream watershed. The mean PMF could probably be 1.7 times lager than the result of Gajiyama's equation. It is equivalent to the flood of return period 1,000 to 10,000 yrs.

  • PDF