DOI QR코드

DOI QR Code

Hydrological impact of Atmospheric River landfall on the Korean Peninsula

Atmospheric River의 한반도 수문학적 영향에 대한 연구

  • Han, Heechan (Department of Civil and Environmental Engineering, Colorado State University) ;
  • Choi, Changhyun (Risk Management Office, KB Claims Survey and Adjusting) ;
  • Moon, Heyjin (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Jung, Jaewon (Institute of Water Resources System, Inha University) ;
  • Lee, Choongke (Department of Civil Engineering, Inha University) ;
  • Kim, Hung Soo (Department of Civil Engineering, Inha University)
  • 한희찬 (콜로라도 주립 대학교 토목환경공학과) ;
  • 최창현 (KB손해사정 위험관리실) ;
  • 문혜진 (국립기상과학원 미래기반연구부) ;
  • 정재원 (인하대학교 수자원시스템 연구소) ;
  • 이충기 (인하대학교 토목공학과) ;
  • 김형수 (인하대학교 사회인프라공학과)
  • Received : 2020.09.09
  • Accepted : 2020.10.13
  • Published : 2020.11.30

Abstract

Atmospheric rivers, which transport large amount of water vapor from mid-latitude to the inland, are an important driving force of water cycle and extreme hydrologic phenomenas. The main objective of this study is to analyze the hydrological impact of the AR landfalls on the Korean Peninsula in 2000 - 2015. The result showed that the AR is closely related to the characteristics of precipitation, water level and runoff in the Korean Peninsula. The landfalls of the AR affected about 57% of annual precipitation on the Korean Peninsula, and had a greatest impact on the summer rainfall. It also affected the water level and runoff at the five major rivers of Korea, and water levels exceeding the thresholds of flood warning were observed when the AR landed. Moreover, it was found that the runoff above the third quartile with AR landfalls. These results suggest that the AR not only has a significant influence on the hydrological characteristics of the Korean Peninsula, but also have a close relationship with the extreme hydrological events like floods. The results of this study are expected to be used as the reference for the analysis of the impact of the AR on the various fields in the Korean Peninsula.

중위도에서 내륙으로 많은 양의 수증기를 운반하는 대기천(Atmospheric rivers, AR)은 물 순환과 극한 수문현상에 큰 영향을 미친다. 본 연구에서는 2000 - 2015년도에 한반도에 상륙한 AR이 수문학적으로 미치는 영향력을 분석하였다. 그 결과 AR은 한반도 지역의 강우, 하천수위 및 유량특성과 밀접하게 연관되어 있는 것으로 나타났다. AR의 상륙이 한반도 연 강우량의 약 57%에 영향을 주었고, 여름철 강우량에 큰 영향을 주는 결과를 보였다. AR은 한반도 5대강 주변의 하천 수위와 유량 발생에도 영향을 주었는데, AR이 상륙한 당시 홍수 주의보 및 경보 기준을 넘는 수위가 관측되었다. 또한 유량의 경우, 한반도 5대강 대부분 지역의 3분위 이상 유량 값의 발생에 영향을 주는 것으로 나타났다. 이러한 결과들은 AR이 한반도 수문학적 특성에 큰 영향을 미칠 뿐만 아니라, 홍수와 같은 극한 수문 현상 발생과 매우 밀접한 관련이 있음을 시사하고 있다. 본 연구는 한반도의 다양한 영역에 대한 AR의 영향 분석에 대한 기초 자료로 활용될 수 있을 것으로 기대하는 바이다.

Keywords

References

  1. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormanna, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Holm, E.V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J., Park, B., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J., and Vitart, F. (2011). "The ERA-interim reanalysis: configuration and performance of the data assimilation system." Quarterly Journal of the royal meteorological society, Vol. 137, pp. 553-597. https://doi.org/10.1002/qj.828
  2. Demaria, E., Dominguez, F., Hu, H., von Glinski, G., Robles, M., Skindlov, J., and Walter, J. (2017). "Observed hydrologic impacts of landfalling atmospheric rivers in the Salt and Verde river basins of Arizona, United States." Water Resources Research, Vol. 53, pp. 10025-10042. https://doi.org/10.1002/2017WR020778
  3. Dettinger, M.D. (2013). "Atmospheric rivers as drought busters on the US West Coast." Journal of Hydrometeorology, Vol. 14, No. 6, pp.1721-1732. https://doi.org/10.1175/JHM-D-13-02.1
  4. Espinoza, V., Waliser, D.E., Guan, B., Lavers, D.A., and Ralph, F.M. (2018) "Global analysis of climate change projection effects on Atmospheric Rivers." Geophysical Research Letters, Vol. 45, pp. 4299-4308. https://doi.org/10.1029/2017GL076968
  5. Gimeno, L., Nieto, R., Vazquez, M., and Lavers, D.A. (2014). "Atmospheric rivers: A mini-review." Frontiers in Earth Science, Vol. 2, No. 2, pp. 1-6.
  6. Guan, B., and Waliser, D.E. (2015). "Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies." Journal of Geophysical Research: Atmospheres, Vol. 120, No. 24, pp. 12514-12535. https://doi.org/10.1002/2015JD024257
  7. Han, H., Kim, J., Chandrasekar, V., Choi, J., and Lim, S. (2019). "Modeling streamflow enhanced by precipitation from atmospheric river using the NOAA national water model: A case study of the Russian river basin for February 2004." Atmosphere, Vol. 10, No. 8, p. 466. https://doi.org/10.3390/atmos10080466
  8. Hirota, N., Takayabu, Y.N., Kato, M., and Arakane, S. (2016) "Roles of an atmospheric river and a cutoff low in the extreme precipitation event in Hiroshima on 19 August 2014." Monthly Weather Review, Vol. 144, pp. 1145-1160. https://doi.org/10.1175/MWR-D-15-0299.1
  9. Hu, H., Dominguez, F., Wang, Z., Lavers, D.A., Zhang, G., and Ralph, F.M. (2017). "Linking atmospheric river hydrological impacts on the US West Coast to Rossby wave breaking." Journal of Climate, Vol. 30, No. 9, pp. 3381-3399. https://doi.org/10.1175/JCLI-D-16-0386.1
  10. Kamae, Y., Mei, W., and Xie, S.P. (2017). "Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia." Journal of the Meteorological Society of Japan, Vol. 95, No. 6, pp. 411-431. https://doi.org/10.2151/jmsj.2017-027
  11. Kim, J., Waliser, D.E., Neiman, P.J., Guan, B., Ryoo, J.M., and Wick, G.A. (2013). "Effects of atmospheric river landfalls on the cold season precipitation in California." Climate dynamics, Vol. 40, No. 1-2, pp. 465-474. https://doi.org/10.1007/s00382-012-1322-3
  12. Lavers, D.A., and Villarini, G. (2013). "The nexus between atmospheric rivers and extreme precipitation across Europe." Geophysical Research Letters, Vol. 40, pp. 3259-3264. https://doi.org/10.1002/grl.50636
  13. Modrick, T.M., and Georgakakos, K.P. (2015). "The character and causes of flash flood occurrence changes in mountainous small basins of Southern California under projected climatic change." Journal of Hydrology: Regional Studies, Vol. 3, pp. 312-336. https://doi.org/10.1016/j.ejrh.2015.02.003
  14. Moon, H., Kim, J., Guan, B., Waliser, D.E., Choi, J., Goo, T., Kim, Y., and Byun, Y.H. (2019). "The effects of Atmospheric River landfalls on precipitation and temperature in Korea." Atmosphere, Vol. 29, No. 4, pp. 343-353. https://doi.org/10.14191/Atmos.2019.29.4.343
  15. Mundhenk, B.D., Barnes, E.A., and Maloney, E.D. (2016). "All-season climatology and variability of atmospheric river frequencies over the North Pacific." Journal of Climate, Vol. 29, pp. 4885-4903. https://doi.org/10.1175/JCLI-D-15-0655.1
  16. Neiman, P.J., Schick, L.J., Ralph, F.M., Hughes, M., and Wick, G.A. (2011). "Flooding in western Washington: The connection to atmospheric rivers." Journal of Hydrometeorology, Vol. 12, pp. 1337-1358. https://doi.org/10.1175/2011JHM1358.1
  17. Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E., and Anquetin, S. (2008). "Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins." Journal of Hydrology, Vol. 362, No. 3-4, pp. 274-290. https://doi.org/10.1016/j.jhydrol.2008.08.023
  18. Ralph, F.M., Coleman, T., Neiman, P.J., Zamora, R.J., and Dettinger, M.D. (2013). "Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California." Journal of Hydrometeorology, Vol. 14, No. 2, pp. 443-459. https://doi.org/10.1175/JHM-D-12-076.1
  19. Ralph, F.M., Neiman, P.J., and Wick, G.A. (2004). "Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98." Monthly Weather Review, Vol. 132, pp. 1721-1745. https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2
  20. Ralph, F.M., Neiman, P.J., Wick, G.A., Gutman, S.I., Dettinger, M.D., Cayan, D.R., and White, A.B. (2006). "Flooding on California's Russian River: Role of atmospheric rivers." Geophysical Research Letters, Vol. 33, L13801. https://doi.org/10.1029/2006GL026689
  21. Ralph, F.M., Rutz, J.J., Cordeira, J.M., Dettinger, M., Anderson, M., Reynolds, D., Schick, L.J., and Smallcomb, C. (2019). "A scale to characterize the strength and impacts of atmospheric rivers." Bulletin of the American Meteorological Society, Vol. 100, No. 2, pp. 269-289. https://doi.org/10.1175/BAMS-D-18-0023.1
  22. Stohl, A., Forster, C., and Sodemann, H. (2008). "Remote sources of water vapor forming precipitation on the Norwegian west coast at 60 N - a tale of hurricanes and an atmospheric river." Journal of Geophysical Research: Atmospheres, Vol. 113, D05102.
  23. Zhu, Y., and Newell, R.E. (1994). "Atmospheric rivers and bombs." Geophysical Research Letters, Vol. 21, pp. 1999-2002. https://doi.org/10.1029/94GL01710
  24. Zhu, Y., and Newell, R.E. (1998). "A proposed algorithm for moisture fluxes from atmospheric rivers." Monthly weather review, Vol. 126, pp. 725-735. https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2