Abstract
Korea Water Resources Corporation(KOWACO) has developed the Integrated Real-time Water Management System(IRWMS) that calculates monthly optimal ending target storages by using Sampling Stochastic Dynamic Programming(SSDP) with Ensemble Streamflow Prediction(ESP) running on the $1^{st}$ day of each month. This system, however, has a shortcoming: it cannot reflect the hydrolmeteorologic variations in the middle of the month. To overcome this drawback, in this study updated ESP forecasts three times each month by using the observed precipitation series from the $1^{st}$ day of the month to the forecast day and the historical precipitation ensemble for the remaining days. The improved accuracy and its effect on the reservoir operations were quantified as a result. SSDP/ESP21 that reflects within-a-month hydrolmeteorologic states saves $1\;X\;10^6\;m^3$ in water shortage on average than SSDP/ESP01. In addition, the simulation result demonstrated that the effect of ESP accuracy on the reduction of water shortage became more important when the total runoff was low during the drawdown period.
한국수자원공사에서는 매월 1일 생성한 월 앙상블 유량예측(Ensemble Streamflow Prediction, ESP)을 근거로 월 최적운영 모형인 SSDP모형을 통해 월말목표저수량을 산정할 수 있는 실시간 물 관리 시스템을 구축하였다. 그러나 월 중간에 발생하는 수문기상학적 변화를 반영할 수 없다는 단점을 가지고 있어 이를 보완하자는 필요성이 제기되었다. 이를 위해 본 연구에서는 1일부터 예측시점까지는 그 동안 발생한 강우 관측자료를 이용하고 이후 기간에는 발생 가능한 모든 과거 강수시나리오를 이용하는 기법을 통해 매월 10일 간격으로 3차례 앙상블예측을 갱신하여 예측정확도를 향상시켰으며, 예측정확도에 따른 저수지 운영효과의 개선여부를 정량적으로 분석하였다. 그 결과 월중 수문상황을 반영한 SSDP/ESP21모형이 그렇지 못한 SSDP/ESP01모형에 비해 연평균 $1\;X\;10^6\;m^3$의 용수부족 감소효과를 가졌으며 전반적으로 이수기에 총 유량이 적으면서 예측정확도가 향상된 경우 상당한 용수부족 감소효과를 나타냄을 또한 알 수 있었다.