• Title/Summary/Keyword: 砂質土

Search Result 564, Processing Time 0.027 seconds

Earth Pressure Equation Acting on the Cylindrical Diaphragm Wall in a Shaft (원형수직구에 설치된 강성벽체에 작용하는 토압산정방법)

  • Kong, Jin-Young;Shin, Young-Wan;Hwang, Yi-Sung;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.21-29
    • /
    • 2009
  • On plane strain condition, many researchers have investigated the earth pressure according to the shape of wall, and standardized method has been applied to the design of the retaining wall. But on cylindrical diaphragm wall, at-rest earth pressure has been generally used. Even though this method is on conservative side, it may lead to over-design. In this paper, the application of convergence confinement method to the calculation of the earth pressure acting on the cylindrical diaphragm wall of a shaft was suggested. In addition, a model test was carried out to investigate the distributions of earth pressure. Model test results show that the earth pressures of diaphragm wall are about 1.4 times larger than active earth pressure and about 0.8 times less than at-rest earth pressure.

Development of Modified Disturbed State Concept Model for Liquefaction Analysis (액상화 해석을 위한 수정교란상태개념 모델 개발)

  • Park, Keun-Bo;Choi, Jae-Soon;Park, Inn-Joon;Kim, Ki-Poong;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.35-51
    • /
    • 2008
  • In this paper, the application of the DSC model to the analysis of liquefaction potential is examined through experimental and analytical investigations. For more realistic description of dynamic responses of saturated sands, the DSC model was modified based on the dynamic effective stress path and excess pore pressure development. Both static and cyclic undrained triaxial tests were performed for sands with different relative densities and confining stresses. Based on test results, a classification of liquefaction phases in terms of the dynamic effective stress path and the excess pore pressure development was proposed and adopted into the modified DSC model. The proposed methods using the original and modified DSC models were compared with examples with different relative densities and confining stresses. Based on the comparisons between the predicted results using the original and modified DSC models and experimental data, the parameters required to define the model were simplified. It was also found that modified model more accurately simulate initial liquefaction and dynamic responses of soil under cyclic undrained triaxial tests.

Dynamic Shear Properties of Nak-Dong River Sand Determined by Resonant Column/Torsional Shear Test (공진주/비듦전단시험을 이용한 낙동강모래의 동적전단변형특성)

  • Kim, Jin-Man;Park, Yo-Hwan;Lim, Suck-Dong
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.5-15
    • /
    • 2009
  • Dynamic shear properties of Nak-Dong river sand were investigated to build a soil property database for Nak-Dong delta region. Samples were taken from the estuary and the midstream of the river. Laboratory specimens were prepared by air pluviation method, and were tested by using RC/TS apparatus at various confining stresses, relative densities and numbers of cycles. Shear modulus reduction and damping curves were developed using Ramberg-Osgood and Modified Hyperbolic Models. The developed curves, compared to those reported by other investigators, show only a slight difference. The outcome of this RC/TS experiments can be very important resources when accessing the dynamic response of sandy soils in Nak-Dong delta region in the future.

Improvement Scheme of Simplified Liquefaction Potential Evaluation for a Dredged and Reclaimed Ground (준설매립지반의 액상화 간편예측 개선에 관한 연구)

  • Jung, Min-Hyung;Kim, Ju-Hyun;Jeong, Sang-Guk;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.47-57
    • /
    • 2007
  • In this study, the analysis of density characteristics of some dredged and reclaimed ground sites, which is necessary for liquefaction evaluation of a dredged and reclaimed ground, was conducted. From analyzing a simplified liquefaction potential evaluation using SPT-N values which have been applied as domestic earthquake-resistant design criterion, improvement scheme is suggested. Based on the analysis result of density characteristics, it was found out that the relative density and the intial N-value ranged respectively $40{\sim}50%\;and\;5{\sim}8$. In the case of applying Liao & Whitman's equation to correct effective overburden pressure, liquefaction resistance of the upper ground that is relatively weaker than that of lower ground is overestimated. So, Skempton's equation is recommended. And the N value with depth which is applied for design process should be estimated by the exponential equation, $N=1.35{\sigma}'^{0.75}$.

Characteristics of Behavior of Steel Sheet Pile installed by Vibratory Pile Driver (진동타입기에 의해 시공되는 강널말뚝의 거동특성)

  • Lee, Seung Hyun;Kim, Byoung Il;Kim, Zu Cheol;Kim, Jeong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.27-35
    • /
    • 2010
  • Instrumented steel sheet piles being driven by vibratory pile driver were installed in granular soil deposit and behaviors of the sheet piles were investigated. One of the instrumented steel sheet pile was installed without clutch and the other was installed with clutch. Sheet pile with clutch means that of installed in connection with pre-installed sheet pile. Penetration rates of sheet piles measured from depth measuring drum has shown that interlock friction had great effect on penetration speed of sheet pile. Clutch friction shows irregular distribution along the depths of penetration and its magnitude was estimated as 19.1kN/m. According to the accelerations obtained from accelerometer, it was seen that steel sheet pile behaviored nearly as a rigid body. Efficiency factor of an isolated sheet pile was 0.42 and that of the connected sheet pile was 0.71. Shapes of dynamic load transfer curves obtained from analysis of measuring devices was similar to those suggested by Dierssen.

Determination of optimum fertilizer rates for barley reflecting the effect of soil and climate on the response to NPK fertilizers (기상(氣象) 및 토양조건(土壤條件)으로 본 대맥(大麥)의 NPK 시비적량결정(施肥適量決定))

  • Park, Nae Joung;Lee, Chun Soo;Ryu, In Soo;Park, Chun Sur
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.177-184
    • /
    • 1974
  • An attempt was made to determine simple and the most reasonable fertilizer recommendation for barley utilizing the present knowledge about the effect of soil and climatic factors on barley response to NPK fertilizer in Korea and establishing the critical contents of available nutrients in soils. The results were summarized as follows. 1. The relationships between relative yields or fertilizers rates for maximum yields from quadratic response curves and contents of organic matter, available $P_2O_5$, exchangeable K in soils were examined. The trend was more prospective with relative yields because of smaller variation than with fertilizer rates. 2. Since the relationship between N relative yields and organic matter contents in soils was almost linear over the practical range, it was difficult to determine the critical content for nitrogen response by quadrant methods. However, 2.6%, country average of organic matter content in upland soils was recommended as the critical point. 3. There showed a trend that average optimum nitrogen rater was higher in heavy texture soils, colder regions. 4. The critical $P_2O_5$ contents in soil were 96 or 118 ppm in two different years, which were very close to the country average, 114 ppm of $P_2O_5$ contents in upland soils. The critical K content in soil was 0.32 me/100g, which was exactly coincident to the country average of exchangeable K in upland soils. 5. According to the contents of avaiiable $P_2O_5$ and exchangeable K, several ranges were established for the purpose of convenience in fertilizer recommendation, that is, very low, Low, Medium, High and very High. 6. More phosphate was recommended in the northern region, clayey soils, and paddy soils, whereas less in the southern region and sandy soils. More potash was recommended in the northern region and sandy soils, whereas less in the southern region and clayey soils. 7. The lower the PH, the more fertilizers were recommended. However, liming was considered to be more effective than increas in amount of fertilizers.

  • PDF

Evaluation of Liquefaction Strength Based on Korean Earthquake Magnitude (국내 발생 지진규모를 고려한 액상화저항강도 산정)

  • 신윤섭;박인준;최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.307-317
    • /
    • 1999
  • The purpose of this study is to utilize conventional procedures for evaluation of liquefaction potential and to compare the results obtained by modified detailed method based on Korean earthquake magnitude (M=6.5). Liquefaction potential is assessed by comparing liquefaction strength of soil and cyclic shear stress generated in the soil layers during earthquakes. The cyclic shear stress is computed from the earthquake response analysis, and liquefaction strength of soil is evaluated by using results from cyclic triaxial tests. The cyclic triaxial tests are performed on many different conditions of sample ; relative densities(50%, 60%, and 70%), initial effective confining pressures (70kPa, 100kPa, and 150kPa), and fine contents(10%, 20%, and 30%). From the result of comparing the conventional procedure with the modified detailed method, it is found that the modified detailed method tends to evaluate larger safety factor against liquefaction in the weak sand site$(FS \leq1.5)$. Therefore in this case, it is suggested that liquefaction potential should be evaluated by using the modified detailed method based on cyclic triaxial tests. It is also found that in modified detailed method based on earthquake magnitude 6.5, critical depth where liquefaction can be generated is around 15m from the ground surface.

  • PDF

A Taxonomical Consideration based on Changes of Salinity and Profile Features of the Texturally Different Two Reclaimed Tidal Soils (간척지 염해답토양의 토성별 제염기간 및 단면특성변화를 기준한 분류학적 고려)

  • Son, Yeon-Kyu;Hyeon, Keun-Soo;Seo, Myung-Chul;Jung, Kang-Ho;Hyun, Byung-keun;Jung, Suk-Jae;Song, Kwan-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.59-64
    • /
    • 2006
  • To analyze the changes of soil physico-chemical properties after reclamation, we carried out an experiment for 75 samples of representative saline soils in South Korea. The more the years after reclamation is proceeded, the blighter the soil color is, soil horizon differentiation and structure is developed, but electrical conductivity(EC) decreased. After the soil survey, coarse textured soils were more quickly de-salined than the fine textured soils. In case of fine loamy textured Poseung series, it could be estimated that the series had Salic horizons in sub-order level of taxonomical classification. In other case of coarse loamy textured soil series, it could be estimated that the series had Sodic properties in sub-group level. Sodium contents of fine loamy textured soils were not decreased after reclamation, but those of coarse loamy textured Gwanghwal series reclaimed about 76 years ago were reclassified because of desalinization. To be desalined low to 4 dSm-1 of EC, it presumably takes about 108, or 12 years for fine loamy and coarse loamy textured soils, respectively.

Parametric Study of Dynamic Soil-pile-structure Interaction in Dry Sand by 3D Numerical Model (3차원 수치 모델을 이용한 건조사질토 지반-말뚝-구조물 동적 상호작용의 매개변수 연구)

  • Kwon, Sun-Yong;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.51-62
    • /
    • 2016
  • Parametric studies for various site conditions by using 3d numerical model were carried out in order to estimate dynamic behavior of soil-pile-structure system in dry soil deposits. Proposed model was analyzed in time domain using FLAC3D which is commercial finite difference code to properly simulate nonlinear response of soil under strong earthquake. Mohr-Coulomb criterion was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling was used as boundary condition to reduce analysis time. Also, initial shear modulus and yield depth were appropriately determined for accurate simulation of system's nonlinear behavior. Parametric study was performed by varying weight of superstructure, pile length, pile head fixity, soil relative density with proposed numerical model. From the results of parametric study, it is identified that inertial force induced by superstructure is dominant on dynamic behavior of soil-pile-structure system and effect of kinematic force induced by soil movement was relatively small. Difference in dynamic behavior according to the pile length and pile head fixity was also numerically investigated.

Estimation of Pile Ultimate Lateral Load Capacity in Sand Considering Lateral Stress Effect (응력상태를 고려한 사질토지반에 관입된 말뚝의 극한수평지지력 분석 및 평가)

  • Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Hwang, Sung-Wuk;Kim, Min-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • In this study, ultimate lateral load capacity of piles is analyzed with consideration of lateral stress effect. Based on results obtained in this study, a method for the estimation of ultimate lateral load capacity is proposed. This makes it possible to more realistically estimate the ultimate lateral load capacity under various stress states caused by in-situ soil condition and pile installation process. Calibration chamber test results with various soil conditions were used in the analysis. From the test results, it was found that effect of the lateral stress was greater than that of the vertical stress on the ultimate lateral load capacity of piles. It was also found that, as the relative density increases, displacements required to reach the ultimate state increases, showing relative displacements of around 14% and 18-25% for $D_R$ : 55% and 86%, respectively. Based on results obtained in this study, a methodology for the estimation of ultimate lateral load capacity of piles using correction factors was proposed. Results from proposed method matched well measured results.