• Title/Summary/Keyword: *-Noetherian domain

Search Result 39, Processing Time 0.028 seconds

ON PIECEWISE NOETHERIAN DOMAINS

  • Chang, Gyu Whan;Kim, Hwankoo;Wang, Fanggui
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.623-643
    • /
    • 2016
  • In this paper, we study piecewise Noetherian (resp., piecewise w-Noetherian) properties in several settings including flat (resp., t-flat) overrings, Nagata rings, integral domains of finite character (resp., w-finite character), pullbacks of a certain type, polynomial rings, and D + XK[X] constructions.

THE S-FINITENESS ON QUOTIENT RINGS OF A POLYNOMIAL RING

  • LIM, JUNG WOOK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.617-622
    • /
    • 2021
  • Let R be a commutative ring with identity, R[X] the polynomial ring over R and S a multiplicative subset of R. Let U = {f ∈ R[X] | f is monic} and let N = {f ∈ R[X] | c(f) = R}. In this paper, we show that if S is an anti-Archimedean subset of R, then R is an S-Noetherian ring if and only if R[X]U is an S-Noetherian ring, if and only if R[X]N is an S-Noetherian ring. We also prove that if R is an integral domain and R[X]U is an S-principal ideal domain, then R is an S-principal ideal domain.

SOME ONE-DIMENSIONAL NOETHERIAN DOMAINS AND G-PROJECTIVE MODULES

  • Kui Hu;Hwankoo Kim;Dechuan Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1453-1461
    • /
    • 2023
  • Let R be a one-dimensional Noetherian domain with quotient field K and T be the integral closure of R in K. In this note we prove that if the conductor ideal (R :K T) is a nonzero prime ideal, then every finitely generated reflexive (and hence finitely generated G-projective) R-module is isomorphic to a direct sum of some ideals.

REGULARITY RELATIVE TO A HEREDITARY TORSION THEORY FOR MODULES OVER A COMMUTATIVE RING

  • Qiao, Lei;Zuo, Kai
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.821-841
    • /
    • 2022
  • In this paper, we introduce and study regular rings relative to the hereditary torsion theory w (a special case of a well-centered torsion theory over a commutative ring), called w-regular rings. We focus mainly on the w-regularity for w-coherent rings and w-Noetherian rings. In particular, it is shown that the w-coherent w-regular domains are exactly the Prüfer v-multiplication domains and that an integral domain is w-Noetherian and w-regular if and only if it is a Krull domain. We also prove the w-analogue of the global version of the Serre-Auslander-Buchsbaum Theorem. Among other things, we show that every w-Noetherian w-regular ring is the direct sum of a finite number of Krull domains. Finally, we obtain that the global weak w-projective dimension of a w-Noetherian ring is 0, 1, or ∞.

STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

  • Chang, Gyu Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1905-1914
    • /
    • 2013
  • Let D be an integral domain with quotient field K, M a torsion-free D-module, X an indeterminate, and $N_v=\{f{\in}D[X]|c(f)_v=D\}$. Let $q(M)=M{\otimes}_D\;K$ and $M_{w_D}$={$x{\in}q(M)|xJ{\subseteq}M$ for a nonzero finitely generated ideal J of D with $J_v$ = D}. In this paper, we show that $M_{w_D}=M[X]_{N_v}{\cap}q(M)$ and $(M[X])_{w_{D[X]}}{\cap}q(M)[X]=M_{w_D}[X]=M[X]_{N_v}{\cap}q(M)[X]$. Using these results, we prove that M is a strong Mori D-module if and only if M[X] is a strong Mori D[X]-module if and only if $M[X]_{N_v}$ is a Noetherian $D[X]_{N_v}$-module. This is a generalization of the fact that D is a strong Mori domain if and only if D[X] is a strong Mori domain if and only if $D[X]_{N_v}$ is a Noetherian domain.

REDUCTION OF ABELIAN VARIETIES AND CURVES

  • Moshe Jarden;Aharon Razon
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.515-545
    • /
    • 2024
  • Consider a Noetherian domain R0 with quotient field K0. Let K be a finitely generated regular transcendental field extension of K0. We construct a Noetherian domain R with Quot(R) = K that contains R0 and embed Spec(R0) into Spec(R). Then, we prove that key properties of abelian varieties and smooth geometrically integral projective curves over K are preserved under reduction modulo p for "almost all" p ∈ Spec(R0).

A SIMPLE PROOF OF HILBERT BASIS THEOREM FOR *ω-NOETHERIAN DOMAINS

  • Lim, Jung Wook;Oh, Dong Yeol
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.197-201
    • /
    • 2013
  • Let D be an integral domain with quotient field K, * a star-operation on D, $GV^*(D)$ the set of nonzero finitely generated ideals J of D such that $J_*=D$, and $*_{\omega}$ a star-operation on D defined by $I_{*_{\omega}}=\{x{\in}K{\mid}Jx{\subseteq}I\;for\;some\;J{\in}GV^*(D)\}$ for all nonzero fractional ideals I of D. In this article, we give a simple proof of Hilbert basis theorem for $*_{\omega}$-Noetherian domains.

A NOTE ON ZERO DIVISORS IN w-NOETHERIAN-LIKE RINGS

  • Kim, Hwankoo;Kwon, Tae In;Rhee, Min Surp
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1851-1861
    • /
    • 2014
  • We introduce the concept of w-zero-divisor (w-ZD) rings and study its related rings. In particular it is shown that an integral domain R is an SM domain if and only if R is a w-locally Noetherian w-ZD ring and that a commutative ring R is w-Noetherian if and only if the polynomial ring in one indeterminate R[X] is a w-ZD ring. Finally we characterize universally zero divisor rings in terms of w-ZD modules.