DOI QR코드

DOI QR Code

A NOTE ON QUASI-*-INVERTIBLE AND *-INVERTIBLE IDEALS

  • Kim, Hwankoo (Department of Information Security Hoseo University) ;
  • Oh, Dong Yeol (Division of Liberal Arts Hanbat National University)
  • Received : 2013.07.30
  • Accepted : 2013.09.27
  • Published : 2013.11.15

Abstract

Let * be a star-operation on an integral domain R. We show that if R is a $*_{\omega}$-Noetherian domain, then quasi-$*_{\omega}$-invertible prime $*_{\omega}$-ideals of R are minimal, and prime ideals of R minimal over a $*_{\omega}$-invertible $*_{\omega}$-ideal are minimal.

Keywords

References

  1. D. D. Anderson and S. J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), 2461-2475. https://doi.org/10.1080/00927870008826970
  2. H. S. Butts, Quasi-invertible prime ideals, Proc. Amer. Math. Soc. 16 (1965), 291-292. https://doi.org/10.1090/S0002-9939-1965-0173684-2
  3. G. W. Chang, Quasi-invertible prime t-ideals, Houston J. Math. 33 (2007), 385-389.
  4. R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure Appl. Math. vol. 90, Queen's University, Kingston, Ontario, Canada, 1992.
  5. C. J. Hwang and J. W. Lim, A note on ${\ast}_{\omega}$-Noetherian domains, Proc. Amer. Math. Soc. 141 (2013), 1199-1209.
  6. I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington, New Jersey, 1994.
  7. H. Kim and Y. S. Park, Some characterizations of Krull domains, J. Pure Appl. Algebra 208 (2007), 339-344. https://doi.org/10.1016/j.jpaa.2006.01.002
  8. W. Krull, Uber den Aufbau des Nullideals in ganz abgeschlossenen Ringen mit Teilerkettensats, Math. Ann. 102 (1929), 363-369.
  9. V. Peric, Eine Bemerkung zu den invertierbaren und fast invertierbaren Idealen, Arch. Math. (Basel) 15 (1964), 415-417. https://doi.org/10.1007/BF01589224
  10. F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), 1285-1306. https://doi.org/10.1080/00927879708825920
  11. M. Zafrullah, Ascending chain conditions and star operations, Comm. Algebra 17 (1989), 1523-1533. https://doi.org/10.1080/00927878908823804