References
- V. S. Adamchik and H. M. Srivastava, Some series of the Zeta and related functions, Analysis 18 (1998), 131-144.
-
N. Batir, Integral representations of some series involving
$(^{2k}_{k})^{-1}$ $k^{-n}$ and some related series, Appl. Math. Comput. 147 (2004), 645-667. https://doi.org/10.1016/S0096-3003(02)00802-0 - M. G. Beumer, Some special integrals, Amer. Math. Monthly 68 (1961), 645-647. https://doi.org/10.2307/2311513
- J. Choi, Certain summation formulas involving harmonic numbers and gen-eralized harmonic numbers, Appl. Math. Comput. 218 (2011), 734-740; doi: 10.1016/j.amc.2011.01.062.
- J. Choi, Finite summation formulas involving binomial coeffcients, harmonic numbers and generalized harmonic numbers, J. Inequ. Appl. 2013, 2013:49. http://www.journalofinequalitiesandapplications.com/content/2013/1/49
- J. Choi, Log-sine and log-cosine integrals, Honam Math. J. 35 (2013), no. 2, 137-146. https://doi.org/10.5831/HMJ.2013.35.2.137
- J. Choi, Y. J. Cho, and H. M. Srivastava, Log-sine integrals involving series associated with the Zeta function and Polylogarithms, Math. Scand. 105 (2009), 199-217. https://doi.org/10.7146/math.scand.a-15115
- J. Choi and H. M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005), 51-70. https://doi.org/10.1007/s11139-005-3505-6
- J. Choi and H. M. Srivastava, Some applications of the Gamma and Polygamma functions involving convolutions of the Rayleigh functions, multiple Euler sums and log-sine integrals, Math. Nachr. 282 (2009), 1709-1723. https://doi.org/10.1002/mana.200710032
- J. Choi and H. M. Srivastava, Explicit evaluations of some families of log-sine and log-cosine integrals, Integral Transforms Spec. Funct. 22 (2011), 767-783. https://doi.org/10.1080/10652469.2011.564375
- J. Choi and H. M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Computer Modelling 54 (2011), 2220-2234. https://doi.org/10.1016/j.mcm.2011.05.032
- M. W. Coffey, On some series representations of the Hurwitz zeta function, J. Comput. Appl. Math. 216 (2008), 297-305. https://doi.org/10.1016/j.cam.2007.05.009
- L. Lewin, Polylogarithms and Associated Functions, Elsevier (North-Holland), New York, London and Amsterdam, 1981.
- Th. M. Rassias and H. M. Srivastava, Some classes of infinite series associated with the Riemann Zeta and Polygamma functions and generalized harmonic numbers, Appl. Math. Comput. 131 (2002), 593-605. https://doi.org/10.1016/S0096-3003(01)00172-2
-
L. C. Shen, Remarks on some integrals and series involving the Stirling numbers and
${\zeta}$ (n), Trans. Amer. Math. Soc. 347 (1995), 1391-1399. - A. Sofo and H. M. Srivastava, Identities for the harmonic numbers and binomial coeffcients, Ramanujan J. 25 (2011), 93-113. https://doi.org/10.1007/s11139-010-9228-3
- H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
- H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London, and New York, 2012.
Cited by
- A family of polylog-trigonometric integrals 2017, https://doi.org/10.1007/s11139-017-9917-2