• Title/Summary/Keyword: (p, q)-special polynomials

Search Result 8, Processing Time 0.024 seconds

SOME EXPLICIT PROPERTIES OF (p, q)-ANALOGUE EULER SUM USING (p, q)-SPECIAL POLYNOMIALS

  • KANG, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.37-56
    • /
    • 2020
  • In this paper we discuss some interesting properties of (p, q)-special polynomials and derive various relations. We gain some relations between (p, q)-zeta function and (p, q)-special polynomials by considering (p, q)-analogue Euler sum types. In addition, we derive the relationship between (p, q)-polylogarithm function and (p, q)-special polynomials.

A NOTE ON THE GENERALIZED BERNOULLI POLYNOMIALS WITH (p, q)-POLYLOGARITHM FUNCTION

  • JUNG, N.S.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.145-157
    • /
    • 2020
  • In this article, we define a generating function of the generalized (p, q)-poly-Bernoulli polynomials with variable a by using the polylogarithm function. From the definition, we derive some properties that is concerned with other numbers and polynomials. Furthermore, we construct a special functions and give some symmetric identities involving the generalized (p, q)-poly-Bernoulli polynomials and power sums of the first integers.

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

  • Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1045-1073
    • /
    • 2014
  • The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss's multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iterated Volkenborn integral, we derive serval identities of symmetry related to the q-extension power sums and the higher order q-Bernoulli polynomials. Many previous results are special cases of the results presented in this paper, including Tuenter's classical results on the symmetry relation between the power sum polynomials and the Bernoulli numbers in [A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), no. 3, 258-261] and D. S. Kim's eight basic identities of symmetry in three variables related to the q-analogue power sums and the q-Bernoulli polynomials in [Identities of symmetry for q-Bernoulli polynomials, Comput. Math. Appl. 60 (2010), no. 8, 2350-2359].

SYMMETRIC IDENTITIES OF THE DEGENERATE MODIFIED q-EULER POLYNOMIALS UNDER THE SYMMETRIC GROUP

  • Kwon, Jongkyum;Pyo, Sung-Soo
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.671-679
    • /
    • 2018
  • Abstract of the article can be written hereAbstract of the article can be written here. Recently, several authors have studied the symmetric identities for special functions(see [3,5-11,14,17,18,20-22]). In this paper, we study the symmetric identities of the degenerate modified q-Euler polynomials under the symmetric group.

A POWER SERIES ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE UNIT ARGUMENT WHICH ARE INVOLVED IN BELL POLYNOMIALS

  • Choi, Junesang;Qureshi, Mohd Idris;Majid, Javid;Ara, Jahan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.169-187
    • /
    • 2022
  • There have been provided a surprisingly large number of summation formulae for generalized hypergeometric functions and series incorporating a variety of elementary and special functions in their various combinations. In this paper, we aim to consider certain generalized hypergeometric function 3F2 with particular arguments, through which a number of summation formulas for p+1Fp(1) are provided. We then establish a power series whose coefficients are involved in generalized hypergeometric functions with unit argument. Also, we demonstrate that the generalized hypergeometric functions with unit argument mentioned before may be expressed in terms of Bell polynomials. Further, we explore several special instances of our primary identities, among numerous others, and raise a problem that naturally emerges throughout the course of this investigation.

CERTAIN SUBCLASS OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH SYMMETRIC q-DERIVATIVE OPERATOR

  • Jae Ho Choi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.647-657
    • /
    • 2023
  • The aim of this paper is to study certain subclass ${\tilde{S^q_{\Sigma}}}({\lambda},\,{\alpha},\,t,\,s,\,p,\,b)$ of analytic and bi-univalent functions which are defined by using symmetric q-derivative operator. We estimate the second and third coefficients of the Taylor-Maclaurin series expansions belonging to the subclass and upper bounds for Feketo-Szegö inequality. Furthermore, some relevant connections of certain special cases of the main results with those in several earlier works are also pointed out.

A Class of Bilateral Generating Functions for the Jacobi Polynomial

  • SRIVASTAVA, H M.
    • Journal of the Korean Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 1971
  • Put ($$^*$$) $$G[x,y]={\sum}\limits^{p+q=n}_{p,q=0}[-n]_{p+q}c_{p,q}x^py^q$$, where $[{\lambda}]_m$ is the Pocbhammer symbol and the $c_{p,q}$ are arbitrary constants. Making use of the specialized forms of some of his earlier results (see [8] and [9] the author derives here bilateral generating functions of the type ($$^{**}$$) $${\sum}\limits^{\infty}_{n=0}{\frac{[\lambda]_n}{n!}}_2F_1[\array{{\rho}-n,\;{\alpha};\\{\lambda}+{\rho};}x]\;G[y,z]t^n$$ where ${\alpha}$, ${\rho}$ and ${\lambda}$ are arbitrary complex numbers. In particular, it is shown that when G[y, z] is a double hypergeometric polynomial, the right-band member of ($^{**}$) belongs to a class of general triple hypergeometric functions introduced by the author [7]. An interesting special case of ($^{**}$) when ${\rho}=-m,\;m$ being a nonnegative integer, yields a class of bilateral generating functions for the Jacobi polynomials $\{P_n{^{{\alpha},{\beta}}}(x)\}$ in the form ($$^{***}$$) $${\sum\limits^{\infty}_{n=0}}\(\array{m+n\\n}\)P{^{({\alpha}-n,{\beta}-n)}_{m+n}(x)\;G[y,z]{\frac{t^n}{n!}}$$, which provides a unification of several known results. Further extensions of ($^{**}$) and ($^{***}$) with G[y, z] replaced by an analogous multiple sum $H\[y_1,{\cdots},y_m\]$ are also discussed.

  • PDF