A Class of Bilateral Generating Functions for the Jacobi Polynomial

  • SRIVASTAVA, H M. (University of Victoria)
  • Received : 1971.03.20
  • Published : 1971.06.30

Abstract

Put ($$^*$$) $$G[x,y]={\sum}\limits^{p+q=n}_{p,q=0}[-n]_{p+q}c_{p,q}x^py^q$$, where $[{\lambda}]_m$ is the Pocbhammer symbol and the $c_{p,q}$ are arbitrary constants. Making use of the specialized forms of some of his earlier results (see [8] and [9] the author derives here bilateral generating functions of the type ($$^{**}$$) $${\sum}\limits^{\infty}_{n=0}{\frac{[\lambda]_n}{n!}}_2F_1[\array{{\rho}-n,\;{\alpha};\\{\lambda}+{\rho};}x]\;G[y,z]t^n$$ where ${\alpha}$, ${\rho}$ and ${\lambda}$ are arbitrary complex numbers. In particular, it is shown that when G[y, z] is a double hypergeometric polynomial, the right-band member of ($^{**}$) belongs to a class of general triple hypergeometric functions introduced by the author [7]. An interesting special case of ($^{**}$) when ${\rho}=-m,\;m$ being a nonnegative integer, yields a class of bilateral generating functions for the Jacobi polynomials $\{P_n{^{{\alpha},{\beta}}}(x)\}$ in the form ($$^{***}$$) $${\sum\limits^{\infty}_{n=0}}\(\array{m+n\\n}\)P{^{({\alpha}-n,{\beta}-n)}_{m+n}(x)\;G[y,z]{\frac{t^n}{n!}}$$, which provides a unification of several known results. Further extensions of ($^{**}$) and ($^{***}$) with G[y, z] replaced by an analogous multiple sum $H\[y_1,{\cdots},y_m\]$ are also discussed.

Keywords