• 제목/요약/키워드: (2D)2LDA

검색결과 41건 처리시간 0.022초

Generalization of Fisher′s linear discriminant analysis via the approach of sliced inverse regression

  • Chen, Chun-Houh;Li, Ker-Chau
    • Journal of the Korean Statistical Society
    • /
    • 제30권2호
    • /
    • pp.193-217
    • /
    • 2001
  • Despite of the rich literature in discriminant analysis, this complicated subject remains much to be explored. In this article, we study the theoretical foundation that supports Fisher's linear discriminant analysis (LDA) by setting up the classification problem under the dimension reduction framework as in Li(1991) for introducing sliced inverse regression(SIR). Through the connection between SIR and LDA, our theory helps identify sources of strength and weakness in using CRIMCOORDS(Gnanadesikan 1977) as a graphical tool for displaying group separation patterns. This connection also leads to several ways of generalizing LDA for better exploration and exploitation of nonlinear data patterns.

  • PDF

C20 Cluster의 안정한 구조 탐색

  • 유동선;이규현
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.205-209
    • /
    • 2013
  • 본 실험에서는 탄소 cluster 중에서 fullerene 구조를 가질 수 있는 가장 작은 cluster인 $C_{20}$ cluster에 대해, 기존 연구에서 가장 안정한 것으로 제시된 cage(fullerene), bowl, ring의 3가지 구조와 $Si_{20}$ cluster를 모방한 구조 하나의 안정성을 확인하였다. ab-initio calculation을 지원하는 Edison nanophysics의 LCAODFLab을 이용하여 LDA-CA, GGA-PBE 두 가지 방법으로 계산하였다. 계산 값을 바탕으로 각 구조의 원자화에너지를 비교한 결과 LDA와 GGA 모두 cage, bowl, ring의 순서로 안정하였다. 최적화한 구조에 대하여 구조분석을 진행하였다. 최적화 결과 Bowl은 $C_{5v}$, ring은 $D_{10h}$, cage는 $C_{2h}$ 대칭성을 가지는 구조였으며, LDA, GGA 계산 모두 $C_{20}$ 구조의 spin polarization에는 영향을 받지 않았다.

  • PDF

What Topics Have Been Studied in Korean Mathematics Education for 15 Years: Latent Topic Modeling Analysis

  • Hwang, Jihyun
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제24권4호
    • /
    • pp.313-335
    • /
    • 2021
  • The purpose of this research is to identify topics discussed by Korean mathematics education studies and examine research trends for 15 years. I applied latent Dirichlet allocation (LDA) to the original text datasets including English abstracts of 3,157 articles published in eight journals indexed by the Korean Citation Index (KCI) from 1997 to 2019. I identified an LDA model with 60 topics, then research trends in 2,884 articles between 2002 and 2018 were as follows; mathematics educators have paid most attention to teacher education through 2010 to 2015 and curriculum analysis after 2016. The findings in this research can contribute to understand what have been discussed in Korean mathematics education society as well as what will and need to be emphasized more in the future compared to the global research trends. In addition, LDA has potentials to identify topics and keywords of manuscripts newly written and submitted to any journals in addition to information provided by authors.

앙상블 접근법을 이용한 반감독 차원 감소 방법 (A Semi-supervised Dimension Reduction Method Using Ensemble Approach)

  • 박정희
    • 정보처리학회논문지D
    • /
    • 제19D권2호
    • /
    • pp.147-150
    • /
    • 2012
  • 클래스들 간의 거리를 최대화시키는 사영 방향을 구하는 감독차원감소 방법인 선형판별분석법(LDA)은 클래스 정보를 가진 데이터의 수가 매우 적을 때 성능이 급격히 저하되는 경향이 있다. 이러한 경우 상대적으로 저렴한 비용으로 얻을 수 있는 클래스 라벨 정보가 없는 데이터를 활용할 수 있는 반감독 차원 감소법이 사용될 수 있다. 그러나 통계적 차원 감소법에서 흔히 사용되는 행렬연산은 많은 양의 데이터를 사용하는데 메모리와 처리시간에서 한계가 있고, 적은 수의 라벨드 데이터(labeled data)에 비해 너무나 많은 언라벨드 데이터(unlabeled data)의 사용은 처리 시간의 증가에 비해 오히려 성능감소를 가져올 수 있다. 이러한 문제들을 극복하기 위해 앙상블 접근법을 이용한 반감독 차원 감소 방법을 제안한다. 문서분류 문제에서의 실험결과를 통해 제안한 방법의 성능을 입증한다.

토픽모델링과 시계열 분석을 활용한 클라우드 보안 분야 연구 동향 분석 : NTIS 과제를 중심으로 (Analysis of Research Trends in Cloud Security Using Topic Modeling and Time-Series Analysis: Focusing on NTIS Projects)

  • 윤선영;조남옥
    • 융합보안논문지
    • /
    • 제24권2호
    • /
    • pp.31-38
    • /
    • 2024
  • 최근 클라우드 서비스 사용이 확산하면서 클라우드 보안의 중요성이 증가하였다. 본 연구의 목적은 클라우드 보안 분야의 최근 연구 동향을 분석하고 시사점을 도출하는 것이다. 이를 위해 2010년부터 2023년까지 국가과학기술지식정보서비스(NTIS)에서 제공하는 R&D 과제 데이터를 활용하여 클라우드 보안 연구 동향을 분석하였다. LDA 토픽모델링과 ARIMA 시계열 분석을 통해 클라우드 보안 연구의 핵심 토픽 15개를 도출하였으며, AI를 활용한 보안 기술, 개인정보 및 데이터보안, IoT 환경에서의 보안 문제 해결이 연구에서 중요한 영역임을 확인했다. 이는 클라우드 기술의 확산과 기반 시설의 디지털 전환으로 인해 발생할 수 있는 보안 위협에 대응하기 위해 관련 연구가 필요함을 시사한다. 도출된 토픽들을 기반으로 클라우드 보안 분야를 네 가지 범주로 나누어 기술참조모델을 정의하였으며, 전문가 인터뷰를 통해 해당 기술참조모델을 개선하였다. 본 연구는 클라우드 보안 발전의 방향을 제시하며 학계 및 산업계에 미래 연구와 투자에 대한 중요한 지침을 제공할 것으로 기대된다.

ASM기반 (2D)2 하이브리드 전처리 알고리즘을 이용한 얼굴인식 시스템 설계 (Design of ASM-based Face Recognition System Using (2D)2 Hybird Preprocessing Algorithm)

  • 김현기;진용탁;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.173-178
    • /
    • 2014
  • 본 연구에서는 ASM기반 $(2D)^2$ 하이브리드 전처리 알고리즘을 이용한 얼굴인식 분류기와 그것의 설계방법론을 소개한다. 얼굴인식을 위한 이미지는 외부 환경에 쉽게 영향을 받기 때문에, 전처리 단계로 이러한 문제를 해결하기 위해서 ASM을 사용하였다. 특히 사람 얼굴의 특징 추출을 목적으로 널리 이용되고 있다. ASM을 이용해 얼굴영역을 추출 한 뒤 PCA와 LDA를 이용한 $(2D)^2$ 하이브리드 전처리 알고리즘을 이용하여 차원을 축소한다. 전처리 알고리즘을 통한 얼굴데이터는 제안된 다항식 기반 방사형 기저함수 신경회로망의 입력으로 사용된다. 기존의 신경회로망과는 달리 제안된 지능형 패턴 분류기는 강인한 네트워크 특성을 가지며, 예측능력이 우수할 뿐만 아니라 다차원 입출력에 대한 문제도 해결했다. 분류기의 중요한 필수 설계 파라미터(행의 고유벡터의 수, 열의 고유벡터의 수, 클러스터의 수, 퍼지화 계수)는 ABC알고리즘에 의해 최적화 되어진다. 얼굴인식에 많이 사용되는 Yale과 AT&T를 사용하여 인식률을 평가하였다.

미래 자동차 분야 국가연구개발사업의 주요 연구 토픽과 투자 동향 분석: LDA 토픽모델링을 중심으로 (Exploring Key Topics and Trends of Government-sponsored R&D Projects in Future Automotive Fields: LDA Topic Modeling Approach)

  • 마형렬;이철주
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.31-48
    • /
    • 2024
  • 글로벌 자동차 산업은 연결, 자율주행, 공유, 전동화 등의 주요 방향 아래 지속적으로 발전하고 있으며, 국내 자동차 산업 또한 기존의 전통적인 자동차 부품 제조로부터 미래 트렌드에 부합하는 전략적인 업의 전환을 꾀하고 있다. 본 연구에서는 2013년부터 2021년까지 산업통상자원부에서 지원한 미래 자동차 분야 연구개발 과제를 대상으로 토픽 모델링을 수행하였다. 해당 기간을 3개 기간으로 구분하여 주요 토픽의 변화를 분석하였다. 센서와 통신, 운전자 보조 기술, 배터리 및 전력 기술은 전 기간 동안 지속적인 주요 토픽으로 나타났으며, 고강도 경량 차체와 같은 주제는 1기에서만 관찰되었다. 한편, AI, 빅데이터, 수소 연료전지와 같은 주제는 2기와 3기에 점점 더 중요한 토픽으로 부상하였다. 또한, 토픽별 정부 투자액과 투자 증가율을 기준으로 각 기수별 집중 투자 분야를 분석하였다. 이러한 연구 결과는 향후 자동차 분야의 정책 수립 및 연구개발 전략 마련 시 기초 자료로 활용될 것으로 예상되며, 증거 기반의 정책 수립과 결정에 기여할 것으로 기대된다.

Pseudo 2D-HMM을 이용한 효율적인 얼굴인식에 관한 연구 (A Study on Efficient Face Recognition using Pseudo 2D-HMM)

  • 이우주;임정훈;노경석;서희경;이배호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.493-496
    • /
    • 2003
  • 본 논문에서는 계산의 복잡성을 단순화하고, 얼굴영상에 대해 높은 얼굴 인식률을 얻기 위해 2D-HMM(Midden Markov Model) 얼굴인식 방법을 제안하고 실험하였다. 계산의 복잡성을 줄이기 위해 기존의 픽셀값 대신에 2D-DCT계수를 관측벡터로 사용함으로써 관측벡터의 크기와 인식 시스템의 복잡성을 줄일 수 있었다. 얼굴인식 시스템의 성능을 평가하기 위하여 Yale, ORL의 얼굴 데이터베이스에 대하여 기존의 얼굴인식 방법으로 널리 알려진 Eigenface 방법, LDA 방법과 본 논문에서 제안한 방법인 1D-HMM, 2D-HMM방법의 인식률을 비교 평가하였다. 실험결과 2D-HMM 방법의 인식률이 99.5%로 기존의 얼굴인식 방법들보다 우수한 성능을 나타냈다. 또한 일정 state수에 대해 mixture의 수가 증가할수록 인식결과가 좋아짐을 알 수 있었다.

  • PDF

Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis

  • Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • 제2권1호
    • /
    • pp.171-178
    • /
    • 2015
  • This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • 농업과학연구
    • /
    • 제47권3호
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.