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Generalization of Fisher’s linear discriminant analysis
via the approach of sliced inverse regression

Chun-Houh Chen ' and Ker-Chau Li?

ABSTRACT

Despite of the rich literature in discriminant analysis, this complicated
subject remains much to be explored. In this article, we study the theoreti-
cal foundation that supports Fisher’s linear discriminant analysis (LDA) by
setting up the classification problem under the dimension reduction frame-
work as in Li (1991) for introducing sliced inverse regression (SIR). Through
the connection between SIR and LDA, our theory helps identify sources of
strength and weakness in using CRIMCOORDS( Gnanadesikan 1977) as a
graphical tool for displaying group separation patterns. This connection
also leads to several ways of generalizing LDA for better exploration and
exploitation of nonlinear data patterns.

Keywords: Data visualization, Dimension reduction, Dynamic graphics, e.d.r.
directions, Fisher’s linear discriminant analysis, Nonparametric density estima-
tion, SIR.

1. Introduction

Discriminant analysis aims at the classification of an object into one of K
given classes based on information from a set of p predictor variables. Among
the many available methods, the simplest and most popular approach is linear
discriminant analysis (LDA). This article investigates the theoretical foundation
of LDA under the dimension reduction setting of Li(1991). The connection of
LDA to sliced inverse regression (SIR) is established and exploited. This leads
to a variety of ways to generalize LDA so that nonlinear features in the training
data can be better explored and incorporated into the discriminant rule.

A most well-known property for LDA is that LDA is a Bayes rule under a nor-
mality condition about the predictor distribution. More precisely, the condition
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requires that for the ith class, i = 1,---, K, the p-dimensional predictor variable
x = (1, -+, zp) follows a multi-variate normal distribution with mean p; and
a common covariance .. Together with the prior probability m;, i = 1,..., K,
about the relative occurrence frequency for each class, this assumption leads to
a Bayes discriminant rule which coincides with the rule of LDA.

Another way of deriving LDA originates from the consideration about group
separation when there are only two classes, K = 2 (Fisher 1936, 1938). The idea
is to find a linear combination of the predictors, z = a1z1+: - -, apxp, that exhibits
the largest difference in the group means relative to the within-group variance.
The derived variate z is known as Fisher’s discriminant function, or the first
canonical variate. Fisher’s result is further generalized by Rao(1952, Sec 9¢c) to
the multiple class problem, K > 2. In general, after finding the first r canonical
variates, the (r 4+ 1)th canonical variate is the next best linear combination z
that can be obtained subject to the constraint that z must be uncorrelated to all
canonical variates obtained earlier. Canonical variates are also referred to as the
discriminant coordinates (CRIMCOORDS) in Gnanadesikan(1977).

Empirical evidence has shown that scatterplots of the first few CRIMCO-
ORDS can reveal interesting clustering patterns. Such graphical displays are
helpful in studying the degree and nature of class separation and for detecting
possible outliers. However, the nonlinear patterns often observed in such plots
also point to the limitation of the normality assumption in justifying LDA. The
data points within each class do not always appear elliptically distributed. Even
if they do appear so, they hardly have the same orientation-violating the equal
covariance assumption.

The motivation of our study stems from the concern about the theoretic
foundation of LDA. To what extent, can LDA be applied effectively without
the normality assumption? In what sense, can the reduction from the original
p predictors to the first few CRIMCOORDS be deemed "effective”? Are there
any other linear combinations more useful than the CRIMCOORDS in providing
graphical information about group separation? If so, how can one find them? In
this article, we address these issues by formulating the classification problems via
the dimension reduction approach of Li(1991). A key notion in that article is the
effective dimension reduction (e.d.r.) space for general regression problems.

Our paper is organized in the following way. In Section 2, we review the
dimension reduction approach and bring out the connection of sliced inverse re-
gression(SIR) with LDA. It turns out that the e.d.r. directions found by SIR
are proportional to the vectors of the coeflicients used in the canonical variates.
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Via this connection, the theory of SIR can be applied to offer a new theoretical
support for using CRIMCOORDS.

Prior information about the occurrence frequency for each class plays a crucial
role in discriminant analysis. Tt is certainly needed in forming a Bayes rule. But
how critical is it for dimension reduction? This issue is discussed in Section 3. We
argue that dimension reduction can be pursued independent of the specification
of a prior distribution.

LDA can be viewed as a two-stage procedure. The first stage is to find the
canonical variates for reducing the predictor dimension from p to K or less; the
second stage is to split the canonical space linearly into K regions for class-
membership prediction via the Mahalanobis distance. While the SIR theory
justifies the use of canonical variates at the first stage, the theory itself does
not support the use of linear split rules at the second stage. Section 4 discusses
this issue. Nonparametric classification rules can be formed using the first few
canonical variates found at the first stage of LDA. |

As is known, the first moment based SIR does not always work in finding the
entire e.d.r. space. Such knowledge about when SIR will fail helps identify sources
of potential weakness in using CRIMCOORDS. An important special case is when
there are only K = 2 classes. There is only one CRIMCOORD available now,
no matter how complex the true dimension reduction model is. This may not be
enough for locating the entire e.d.r. space because the e.d.r. space can have more
than one dimension. In Section 5, more general methods will be considered.
There are two types of generalization. The first one follows the thoughts of
Principal Hessian directions (PHD) (Li 1992a). It amounts to the comparison
of the second moments of the predictors between classes. The second type of
generalization explores an idea of double-slicing. Several simulation examples are
provided and an application to a real data set is given.

Further discussion and some concluding remarks are given in Section 6.

2. SIR and Fisher’s canonical variates

In this section, the relationship between SIR and canonical variates is es-
tablished first. Then the assumptions used to guarantee the success of SIR are
discussed in the context of classification. These assumptions provide more gen-
eral theoretical support for the use of canonical variates than the well-known
normality assumption underlying LDA.
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2.1. Connection

For discussing the issue of visualization and dimension reduction in general
regression problems, Li(1991) considers the model

Y =g(Bix, -+, Byx€)- (2.1)

Here Y is the response variable, and g is an unknown function with (d + 1)
arguments. The random error ¢ is independent of the p-dimensional regressor x,
but its distribution is unknown. The space spanned by the 8 vectors is called the
e.d.r. space. Any vector b in the e.d.r. space is referred to as an e.d.r. vector
and any linear combination b'x is called an e.d.r. variate. (2.1) represents the
situation in which Y is related to x only through the e.d.r. variates. When d is
smaller than p, one can reduce the regressor dimension from p to d by finding the
e.d.r. directions. Plots of Y against the e.d.r. variates will be more informative
than those against non-e.d.r. variates in revealing the regression structure. Cook
(1994) offers an extensive discussion on the notion of e.d.r. directions.

Sliced inverse regression is a simple method for finding e.d.r. directions. We
describe the population version of SIR first. Denote the covariance matrix of
x by ¥x. The central idea of SIR is to reverse the roles of x and Y. Instead
of regressing ¥ on x, we may consider the inverse regression curve E(x]Y) =
(B(z1]Y), -+, E(zp|Y))'. In general, this curve is in the p dimensional space.
However, Theorem 3.1 of Li(1991) shows that under (2.1) and another condition
to be discussed later, the inverse regression curve indeed falls into a d dimensional
subspace. This subspace is determined only by the e.d.r. directions and 5.
Denote the covariance matrix of the random vector = E(x|Y") by &, = cov(n) =
cov(E(x]Y)). We are led to the following eigenvalue decomposition for finding
e.d.r. directions:

Snbi = i T
A2, (2.2)

Li’s theorem implies that all but the first K eigenvalues must be zero and that
the eigenvectors associated with nonzero eigenvalues are the e.d.r. directions.

The sample version of SIR is easy to obtain. We simply substitute %, and
Y« In (2.2) by their estimates from an ii.d. sample (¥;,x;),i = 1,---,n. The
estimate of Iy is just the sample covariance £, = n™! 37, (x; — X)(x; — X)".
Here x denotes the sample mean. The estimate of X, can be formed by first
partitioning the response variable Y into H intervals, I, h = 1,---, H. Within
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each slice, compute the mean of x, hy, = n,:l Yvie 1, Xi, where np, is the number of
cases in slice h. These slice means constitute a simple estimate of E(x|Y’) and they
can be combined to give a weighted covariance meALtrix, f]n =n"1 Zle n;(h; —
X)(th; — x)', for estimating 3,. The eigenvectors b;’s are the SIR directions and
we shall call l;éx the SIR variates. Large sample properties of SIR directions and
a chi-squared test about the significance of eigenvalues \;’s are given in Li(1991).
More recent results on SIR can be found in Hsing and Carroll (1992), Li (1992),
Schott (1994), Zhu and Ng (1995), Zhu and Fang (1996), and Chen and Li(1998).

The examples and discussion in Li(1991) focused on the case where the re-
sponse variable Y is continuous. But the continuity of ¥ is not required in (2.1).
In fact, when Y is discrete and can take only K distinct values, the slicing step
of SIR is automatic for H = K. This special circumstance fits well into our
classification problem. We can regard each (x;,Y;) as one case in the training
set and the response variable Y; is just the class label for that case. The slice
mean m; corresponds to the vector of the predictor’s mean for the jth group.
The matrix ¥, coincides with the between group variance-covariance matrix in
one-way multivariate analysis of variance (MANOVA).

To elucidate how canonical variates are related to the e.d.r. directions found
by SIR, recall that the first canonical variate is derived by maximizing the ratio
of the between-group variance to the within-group variance. In our notation, for

a linear combination z = a’x, the group means are just a'th;,j = 1,---, K. The

between-group variance, n~' Y. n;(a'th; — a’x)?, can be written as a’3,a. On
g ) J J ’ U]

the other hand, the within-group variance can be written as n=! "7, (a'x; —

a'm. ;)2 = a’$.a, where the class membership for the i-th case is denoted b

3@ . Y
7(7) and X is the within-group variance-covariance matrix, n=! Z?Zl n;%;. The
first canonical variate is the linear combination of x formed by the vector a which
solves the following maximization problem:

e
%
max & A"a, (2.3)
a gfy.a

The solution of (2.3) corresponds to the largest eigenvector of the following
eigenvalue decomposition: ‘ ' ‘

zA)'r}ai - &iieah
N2Y 2 29 (2.4)

To see the connection with SIR, we can rearrange the above eigenvalue de-
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~

composition equation by adding 4;3,a; on both sides :
1+ ’%)Snai = ’A}’z(i‘n + )y

Now we can use the identity that the sum of the between-group variance and
within-group variance equals the total variance, e = i]r, + fle, to obtain :

flnaiz i Tay (2.5)

Comparing this equation with the sample version of (2.2), we see that i =
/(1 4+ %), and a; o bi. We now reach the following observation.

Observation I : The SIR variates are the same as the canonical variates
except for possible differences in scaling.

Canonical variates are often associated with LDA, which can only be theo-
retically justified under the normality assumption :

x|V =j ~ N(pj, Be). (2.6)
If we further assume that
the vectors u; — 1, j =2,---,K, spans a d dimensional space, (2.7

then the Bayes discriminant rule will depend on x only through the first d canon-
ical variates. This is the traditional way of justifying the use of only the first few
significant canonical variates in applying LDA. But (2.6) is apparently too strin-
gent. In fact, one can even argue that if the predictors’ distribution is normal,
then there won't be any interesting patterns to see in the CRIMCOORDS plots.
Thus to fully justify the merit of CRIMCOORDS, we need something entirely
different.

By relating the canonical variates with SIR variates, Observation I brings in
a very broad context for using CRIMCOORDS to reduce the dimension of the
predictors. This is because SIR is developed under much weaker conditions. We
shall discuss these conditions next.

2.2. Condition (2.1)

The theory of SIR is founded on two assumptions. One of them is the dimen-
sion reduction model (2.1). A general comparison of (2.1) to (2.6)-(2.7) can be
made more clear by re-formulating (2.1) from the inverse regression point of view.
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Put B = (B1,-+,B4). (2.1) implies that the conditional density of ¥ given x,
f(Y|x) depends only on B'x; f(Y|x) = f(Y|B'x). Thus the conditional density
of x given Y can be written as ‘ ‘

fYIx)fx(x) _ fY]B'x) fx(x)

FY) = =08y =T A
OB _ o f(0)
By T (B~ T BT (B (28)

Here all f with subscripts are marginal density functions.

For classification problems, the rightmost side in the expression (2.8) gives a
useful factorization for comparing the predictor distributions in different classes.
This can be summarized by the following statement:

Observation II. For classification problems, (2.1) is equivalent to the con-
dition that for any two classes, j and j', the ratio of their density functions of x
depends only on B'x :

FY =4) _ fBXY =3)
[y =7) ~ F(BxY =)

It is straightfoward to verify that (2.6) and (2.7) imply (2.9) if we take
B1,- -+, B4 to be any basis of the space spanned by the differences in p;’s.

(2.9)

2.3. Condition on the predictor distribution

In addition to (2.1) (or equivalently (2.9) for classification problems), SIR
requires another condition on the distribution of x: for any b € RP,

the conditional expectation E(V'x|8]x, -, B;x)is linear. (2.10)
(2.10) is the same as the condition that for any variate a'x,
cov(a'x, B'x) = 0 implies E(a'x|B'x) = a'Ex, (2.11)

(2.11) is much weaker than (2.6)-(2.7). Normality assumption is not needéd
here. Within group-covariances also need not be entirely the same.
One sufficient condition for (2.10) (or equivalently (2.11)) to hold is that

x follows an elliptically-contoured distribution. (2.12)

But this often leads to the impression that (2.12) is equivalent to (210) A
counter-example to this impression is indeed the normal model, (2.6) and (2.7).
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As a mixture of normal distributions, the marginal distribution of x certainly
cannot be elliptically symmetric.

The above false impression comes from a conservative view on when to apply
the SIR methodology. If we want condition (2.10) to hold for all 8 vectors (in-
cluding those not in the e.d.r. space), then as pointed out by Cook and Weisberg
(1991), no distributions other than the elliptical ones will do.

A less conservative attitude seems more appropriate. First of all, the bias of
SIR will not be significant under mild violations of (2.10). Consider the set of
B with the violation of (2.10) is more than a specified amount. The result of
Hall and Li (1993) assures that this set becomes smaller when the dimension of x
gets larger. This leaves a lot of room for SIR to work well even without worrying
about (2.10) prior to the analysis. After applying SIR, we can follow the analysis
by a diagnostic check on this condition. On the other hand, subsampling and/or
reweighting processes can also be carried out to fortify (2.11); Brillinger (1991),
Cook and Natsheim (1994), Li (1991).

Remark 2.1. SIR variates are scaled to have unitary variance but canoni-
cal variates are usually scaled to have unitary within-group variance. Since the
covariance is no longer the same for every group, we prefer the way SIR variates
are scaled.

3. Prior distribution and dimension reduction

The discussion in Section 2 assumes that the training set consists of i.i.d
observations from the same population as the target population where the test
set will come from. This may not be the case in some applications. This section
discusses the case that the training sample is obtained by stratified sampling.
More specifically, a pre-specified number n; of cases are drawn independently
from each class j. The sampling allocation n;/n does not always match the
prior mj(= P{Y = j}), the probability that a random test case from the target
population falls into group j. Recall that under the 0-1 loss, the Bayes rule
classifies a future observation by

max Ty |y (X|Y)- (3.1)

Now suppose the target population follows a dimension reduction model (2.1), or
equivalently (2.9). We can translate (3.1) into

max 7y f(B'x|y). (3.2)
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This shows that in order to find the Bayes rule, we only have to focus on the
e.d.r. variates.

The next question is whether SIR is still applicable for finding the e.d.r.
space under stratified sampling. To answer this question, we study the population
version of SIR by letting n; tend to the infinity; while fixing p; = n;/n. We notice
that SIR takes the same form as (2.2) but with a slightly different interpretation
about the two covariance operators. By fixing p; = n;/n, ¥, is still the between
group variance-covariance matrix as in the one-way MANOVA with the weight
for group j being p;(instead of ;). Similarly, ¥ is the overall sample covariance
of x.

Theorem 3.1. Suppose the sample is drawn by stratified sampling. Then under
(2.9) and (2.11), the eigenvectors with nonzero eigenvalues in the eigenvalue
decomposition(2.2) fall into the e.d.r. space.

Proof. From (2.11), we see that for any a such that a’¥x B = 0, we must have
a'Spa = 0, or equivalently ¥,a = 0. This shows that the eigenspace for (2.2)
associated with the zero eigenvalue must contain any such vector a. Since all
non-zero eigenvectors b; must be orthogonal to a, i.e. a'¥ixb; = 0, with respect
to Ty, they must fall into the column space of B. The theorem is now proved. |

4. Nonparametric regression after SIR

Observation I, Observation IT and Theorem 3.1 provide a general theoretical
foundation for LDA. But this only justifies the first stage of LDA, namely using
the canonical covariates to reduce the dimension. The further use of linear split
rule can only be justified under normality assumption on the distributions for
the e.d.r. variates are completely arbitrary. Without the normality assumption,
it seems natural to apply nonparametric density estimation techniques after di-
mension reduction. For illustration, we shall discuss only the standard kernel
estimation here. Other nonparametric procedures can similarly be applied.

Let xy:,4 = 1,---,n, be the sample drawn from class Y = y. The SIR
directions, ?)1, e ,Bd, converge to by, -+, by respectively at the usual root n rate,
provided that all d nonzero eigenvalues are distinct. The kernel estimate of the
density function of B'x for class Y = y takes the following form:

Sty ta) = = 3T (L), (4.1)
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where the kernel KC(-) is a one-dimensional density function. The bandwidth A
has to converge to 0 at an appropriate rate.

(4.1) can be compared to the ”theoretical” kernel density estimate, should we
be given B exactly:

5 1 ly k b;xyi —tj
Iorx(ty,- -+ tq) = ohP anzllc(—h__)' (4.2)
=1

The consistency of (4.2) for estimating fpix(t1, -,%q) is the subject of stan-
dard kernel density estimation. This allows us to conclude that the discriminant
rule obtained by substituting f{B'x|y) in (3.2) by the kernel estimate (4.1) is
asymptotically Bayes.

Example 4.1 Wave recognition. This example is taken from Breiman et
al. (1984, pp 49-55); see also Loh and Vanichsetakul (1988). There are three
classes and 21 variables. Three triangular basic waveforms wy(-), wa(-), ws(), are
involved: for 7 =1,---,21,

w1(j) =maz(6 — |7 —11],0); wa(i) =wi(j —4); ws(f) =wr(j+4). (43)

Each class is a random convex combination of two basic waveforms with noise
added. Let w; = (w;(1),---,w;(21)),4 = 1,2,3, and u1,uz,u3 be independent
random variables uniformly distributed on [0, 1]. The predictor x is generated by

x =uiwi+ (1l —uj)we+e forY =1
=ugwo + (1 —ug)wsg +¢€, forY =2 (4.4)
=ugw3 + (1 —uz)w; +¢, forY =3,

where € follows the standard normal distribution.

The two-dimensional vector space spanned by w; — wq, w3 — wy is the e.d.r.
space. This can be seen by verifying (2.9). ‘

We generate 200 cases from each group as the training sample. Then SIR is
applied. Only the first two eigenvalues are nonzero, 0.651 and 0.546. After pro-
jecting the predictors along the first and the second SIR directions, kernel density
estimation is applied to get the boundaries of Bayes classification rules for the
uniform prior distribution m, = 1/3 and the prior distribution 7, = y/6 respec-
tively, Figure 4.1(a)-(b). Classification boundaries are seen to be approximately
linear. This is as expected. In fact, SIR variates for the population version can be
represented by mixtures of normals with means being on a equilateral triangular,
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Figure 4.1(c). By a geometric argument, we can show that the contours for the
likelihood ratios must be straight lines.

Another interesting feature about this example is that the e.d.r. space does
not depend on the distribution of uy, y =1,2,3. We generate another 200 cases
from each group but with u; from the density f(u) = 3u? for u € [0,1]. Apply
SIR and kernel estimation again. For equal prior m, = 1/3, the result is shown
in Figure 4.1(d). Now the Bayes rules are nonlinear.

3.7

2.7 1

1.7 1

SIR-2
SIR-2

-0.3 A

1.3 ¢

SIR-Z

-2.5 -1.5 -0.5 0.5 1.5 2.5

Figure 4.1: Wave Recognition Problem: (a) SIR’s View with Equal Contour
Boundary, my = 1/3 ; (b) SIR’s View with Equal Contour Boundary, m, = y/6 ;
(c) SIR Variates for the Population Version; (d) SIR’s View with Equal Contour
Boundary, (m, = 1/3,u; ~ f(u) = 3u,u € [0,1] ‘
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5. Other SIR type methods for dimension reduction

SIR may only recover part of the e.d.r. space if the dimension of the hyper-
plane spanned by the group means E(x|y) is less than the dimension of the e.d.r.
space d. When this happens, other SIR type methods can help find more e.d.r.
directions that cannot be found by using CRIMCOORDS.

5.1. SIR-II

In addition to E(x|y), PHD (Li 1992) uses second moment of x for dimension
reduction. In our context, it seems more natural to use SIR-II (Li 1991) which
explores the variation in the group covariance matrices. Let ¥, = E[Cov(x|Y)]
be the average of the group covariance matrices. Define

S = E{[Cov(x]Y) — Za)Z5  Cov(x]|Y) — 2,1} (5.1)
Then the eigenvalue decomposition for SIR-II is

Yirc; = viXixe;
Y12 2 Y.

The insertion of the matrix X! in the construction of ;7 is to assure the affine
invariance of the SIR-II procedure. SIR-II is similar to SAVE (Cook and Weisberg
(1991)).

Compared with SIR, a condition stronger than (2.11) is required for SIR-II
to find e.d.r. directions: for any variable a'x,

cov(a'x, B'x) = 0, implies that a'x is independent of B'x. (5.2)

The variance-covariance matrix of (B'x,a'x) for each group Y = y takes a di-
agonal partition because cov[(B'x,a'x)|Y = y] = 0. The first diagonal submatrix
cov(B'x|Y = y) depends on y, but the second one does not: cov(a'x|Y = y) =
cov(a’'x). This implies that the matrix Cov(x|Y") — £, vanishes in all but the the
first submatrix. The a must be in the eigenspace with zero eigenvalue. Now it is
clear that like SIR, SIR-II can find e.d.r. directions.

Theorem 5.1. Under dimension reduction framework, (2.10) (or (2.1)), if (5.2)
holds, then there are at most d nonzero eigenvalues in (5.1) and the corresponding
etgenvectors are in the e.d.r. space.
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However, under the weaker condition (2.11), we can only conclude that some
of the eigenvectors with nonzero eigenvalues might be in the e.d.r. space. If none
of them are in the e.d.r. space, then the e.d.r. space must be contained in the

eigenspace with zero eigenvalue.

Example 5.1 Spherical Distribution Problem

This was considered in Loh and Vanichsetakul (1988). There are two classes
and ten variables with the following distributions:

Group Y = 1: (1) 1, -, x4 are distributed uniformly within a d-dimensional
spherical slab centered at the origin, with inner radius vy and outer radius rg; (2)

Tai1,: -, %10 are independent N(0,1).

Group Y = 2: (z1,---,10) is a 10-dimensional multivariate normal centered
at the origin, with identity covariance matrix.

The last 10 — d variables are just noise. Because of the perfect symmetric
pattern, SIR fails to find the e.d.r. directions, but SIRII does a good job. Ior
d=2,r =35,r3 =4.0 and n; = ng = 200 cases, best view of zo9 against z;
shows that the first class almost completely surrounds the second; Figure 5.1(a).
Figure 5.1(b) is the SIRII view of the first two directions being found, which also
illustrates the equal-contour line of the two densities which can be used as the
boundary classifier for classification of future observations. The eigenvalues for
this example are (0.613, 0.526, 0.063, 0.031, --- ).

(a) )
4 4 — 5
' . - o
4 tr ! -~ ~
P e . . ..
o, .
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@ EFF% “§ o x . . & oy, T s
L~ ¢ o % (-:.20 < N < o > o QQQ‘;V,.,{,Sch )c R
X2 O = o8 Bk Fyoego o = ot c‘% ? S 5,
" -,/G p«)a‘}("o % & o = W, 5‘;"9 “é(‘ 5
HEN G S z G hESmame
. \(oa.gé)? o e - v..O\ .
2 o nF ¥ oo 2 L e 1 o
- ) = ’ ~
. N A .
AN Lt o ¢
'ne - -~
-4 4 . 4 v T -
4 2 [0} 2 4 4 2 o} 2 4
x1 SIRII-1

Figure 5.1: Spherical Distribution Problem: (a) Best View (b) SIRII's View
with Equal-Contour Boundary
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5.2. Double slicing

We begin with the binary case K=2. SIR-I can only find at most one e.d.r.
direction. The rest of them can rely on the 2nd moment based methods to recover.
But as the following example shows, this may not be enough.

Example 5.2 Tai Chi. Consider Figure 5.2a, the well-known Tai Chi figure
in the Asian culture. The regions are in black and in white called Ying and
Yang respectively. The concepts of Yin and Yang and the Five Agents provide
the intellectual framework for much of ancient Chinese scientific development
especially in fields like biology and medicine (Ebrey 1993).

The basic structure of Tai Chi is formed by drawing one large circle, two
medium half circles and two small circles. The two small Yin and Yang circles
located at the centers of the Yang and Yin half circles which are tangent to each
other and are also to the large circle.

We set up the model as follows:

(1). Let x; and z3 be the coordinates of a random point within the large
circle. We then assign the class label Y = 1 if the point falls in the Yin region
and assign Y = 2, otherwise.

(2). z3,--+,zp are independent N(0, 1).

The classification problem is to predict Y from (z1,---,z,).
(a) ®)
0.6
0.4
0.2
x2 o
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Figure 5.2: Tai Chi Example: (a) The Tai Chi Model with Yin and Yang
Classes (b) Simulation of Tai Chi Model with 1000 Observations and the SIRI

direction.
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For this model, SIR-I can only find a single e.d.r. direction. This is the
direction which passes through the mass centers of Yin and Yang regions (Figure
5.2b). However SIR-II can not identify any e.d.r. direction. This is because
the Yin and the Yang regions are anti-symmetry to each other, implying that
covariance matrix of (z1,z2) for Y=1 is the same as that for Y =2. One simple
way to find the second direction necessary for completing the e.d.r. space is to
slice the joint space of the direction identified by SIR-I and the class label Y.

In general, suppose that an e.d.r. direction by is already obtained. We can
take ¥, = cov(E(x|byx,Y)) and conduct the eigenvalue decomposition (2.1).
Under the same condition as SIR, the eigenvectors with nonzero eigenvalues can
be shown to fall into the e.d.r. space.
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Figure 5.3: SIR’s View for the Tai Chi problem with Double Slicing.Figure 5.4
Twist Problem: (a) Best View with SIRI direction (b) SIR’s View with Double
Slicing.

Example 5.2 (continued) For p = 6, we simulated 1000 i.i.d. cases of
(z,Y) using the model specified. The result is in Figure 5.3 and Table 5.1. The
double-sliced SIR-I and SIR-II have recovered the complete e.d.r space for the
Tai Chi structure.
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Table 5.1: Eigenvalues and eigenvectors of SIRI (a) and SIRII (b) for the
Tai Chi problem with Double Slicing.
(a) SIRI

eigenvalues

(.987 .027 .019 .013 .006 .001)

1st etgenvector

(-2.299 3.269 -0.005 -0.011 -0.021 -0.034)

2nd eigenvector

(3.088 2.260 0.039 0.123 0.024 0.312)

(b) SIRII

etgenvalues

(.225 .133 .109 .081 .073 .001)

1st etgenvector

(-3.360 -2.287 -0.009 0.038 0.033 0.060)

2nd eigenvector

(0.200 -0.004 0.386 0.745 0.520 0.102)

Example 5.3 The Twist Problem. This example was originally introduced
as a clustering problem by Koontz and Fukunaga (1972), see also Koontz et. al.
(1975), and Fukunaga (1990). There are two C-shaped trigonometric curves with
random normal noise tangled with each other in a two-dimensional space (Figure

5.6a). There are two classes, one for each curve:
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Figure 5.4: Twist Problem: (a) Best View with SIRI direction (b) SIR’s View
with Double Slicing.
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Group Y =1:
(1). 1 =20cosf + 2,
To = 20sin 8 + 29,
where, 2],z are independent N(0,1) and 6 is N(m, (0.257)%).
(2). 3, -, 2, are independent N(0,1).
Group ¥ =2
(1). z1 =20cos8 + 21,
zo = 20sinf — 20 + 22,
where, 21,z are independent N(0,1) and 6 is N(0, (0.257)2).
(2). z3,---,zp are independent N(0,1).

For p = 10, we generate 300 cases from each class. Since the first two variables
are correlated through the structure of ¢, SIR-I direction will not pass through
the mass centers of these two curves, see Figure 5.4a. In this case, again SIR-II
fails to identify the second e.d.r. direction necessary for obtaining the complete
e.d.r. space. But with double-slicing, we can find the entire e.d.r. space. The
results are shown in Figure 5.6b and Table 5.3. |

Table 5.2: Eigenvalues and eigenvectors of SIRI (a) and SIRII (b) for the
Twist problem with Double Slicing.

(a) SIRI

eigenvalues (.973 .129 .041 .018 .008 .001 .000 .000 .000 .000)
1st etgenvector {(-0.861 0.200 0.034 -0.003 0.049 0.007 0.037 0.014 -0.038 0.023)
2nd eigenvector (0.158 0.089 0.630 0.115 0.379 0.113 0.480 0.055 -0.365 0.283)

(b) SIRII
eigenvalues (.694 .130 .118 .095 .089 .079 .071 .049 .041 .004)
1st eigenvector (-0.926 -1.219 -0.108 0.107 0.010 -0.013 -0.161 -0.001 -0.055 0.024)
2nd eigenvector (—0.05‘1 -0.211 0.386 0.310 -0.300 0.209 0.630 0.170 -0.089 0.416)

Example 5.4 Sonar data. This data set can be found in Gorman and
Sejnowski (1988). Sonar signals bounced off a metal cylinder (class 1) or off a
roughly cylinder rock (class 2) are recorded in 60 channels. The training set
consists of 111 cases from class 1 and 97 cases from class 2. Thus the raw data
consist of p = 60 predictors with n; = 111,n9 = 97. The direct application of
LDA or any generalization to 60 predictors with a sample of only 208 training
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cases is questionable. This is because of the instability in estimating the covari-
ance matrices (see Appendix C). To reduce dimension, feature extraction is often
considered in the engineering literature.

We view the signal recording for each case as one curve s(f;),i = 1,---, 60,
where f;’s denote the given channel frequencies. One way of feature extraction
can be proceeded as follows. First, we find a small number of basis functions
so that each curve can be represented well as a linear combination of the basis
functions. According to a scheme which we describe in detail in Appendix A, four
basis functions denoted by ¢1(f;),- -+, d4(f;) are selected. Suppose each curve is
fitted by least squares:

s(fi) = a+pidi(fi) + - + Bada(fs) + €1 = 1,-- -, 60.

Then we can extract 5 feature variables, z; = o, 77 = f1,---, 25 = f4,from the
original data. Since some curves are fitted better than others, we would like to

include a sixth feature variable zg which is defined by log(r?/(1 — r2)), where r2
is the R-squared value from the least squares fit.
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Figure 5.5: Plot of SIRDS-12 against SIRDS-11 for the Sonar Data with Six
Extracted Feature Variables.

SIR is then applied to this set of six feature variables. The first direction
found by SIR and the class label Y are used as the directions for running double-
sliced SIR (SIRg4s). Two directions are found by SIRDS, which we denote as
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SIRDS-11 and SIRDS-12 (Figure 5.5). The eigenvalues and first two eigenvectors
for SIRDS are displayed in Table 5.3. We observe that the correlation coefficients
between z¢ and SIRDS-11 with SIRDS-12 are -0.07 and 0.6826 respectively. Thus
although SIR (or equivalently LDA) does not use xg, the information contained
in zg is used in SIRDS.

Table 5.3: The first two eigenvectors and eigenvalues
of SIRDS for six base functions, Sonar data.

first vector (:0.51 -21.61 0.00 -1.28 -0.35 -1.05)
second vector (1.64 -3.07 -3.52 -3.60 -3.78 -3.60)
eigenvalues (0.91 0.19 0.10 0.08 0.05 0.03)

After reducing to the two SIRDS variates, a k-nearest-neighbor classifier is
applied. For k=1,3, ...,15, the resubstitution error rates are (24.52%, 22.60%,
23.56%, 22.12%, 19.23%, 20.19%, 23.56%, 24.04%) respectively with a minimum
resubstitution error-rate of 19.23% at k=9.

6. Conclusion

LDA is a popular method for classification. This article re-investigates its
theoretical property from the dimension reduction point of view. The canonical
variates are found to be the same as the SIR variates except for the scaling. We
examine in detail the assumption underlying SIR and apply them to the classi-
fication problems. This helps justify the use of CRIMCOORDS for informative
graphical display of separation patterns between different classes. However the
theory of SIR does not justify the use of linear rules. We illustrate that nonpara-
metric density estimation following dimension reduction can be more informative
then LDA. As in known, SIR may not be able to find ”all” e.d.r. directions. We
investigate two types of generalizations for finding more e.d.r directions. One
of them is the second moment based method. This method explores differences
between group covariance. Compared to SIR, one drawback of this method is
the uncertainty introduced by covariance estimation. Another method, double-
slicing, is less sensitive to covariance estimation. These methods extend the power
of LDA and can be used to reveal more complicated data pattern.
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Appendices: More on Sonar data.

A. Description of the procedure in choosing the basis functions. The
first two basis functions ¢1(f;), ¢2(fi) are taken as the average of all curves s(f;)
from the first class and the second class, respectively (Figure A.1). Each curve is
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Figure A.1: First two basis functions, ¢1(f;) , and ¢2(f;),7 = 1,---,60 . The
solid (red) and dashed (blue) curves represent the mean signals of the two groups
of metal (y = 1) and rock (y = 2).
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Figure A.2: Fisher’s linear discriminant analysis for the three new predictors

with 14lambiguous signals.
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tentatively fitted with these two basis functions. Then an LDA is conducted on
the three predictors, a, f1, f2. Figure A.2 of first CRIMCOORD shows a.good
portions of cases in the middle part cannot be distinguished well. This portion is
extracted out, which has 141 cases. Our third and fourth basis functions ¢3(f;)
and ¢4(f;) are just the average of all curves in this portion that came from class
1 and class 2 respectively (Figure A.3).
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Figure A.3: Additional Basis Functions, ¢3(f;) , and @4(fi),s = 1,---,60 .
The solid (red) and dashed (blue) curves represent the mean signals of the two
groups of metal (y = 1) and rock (y = 2) for the 141 ambiguous cases.

B. Stability. To see how stable the proposed classification procedure by
SIRDS is, we proceed with the following simulations.

Each time we split all 208 cases into a training set and a test set with proba-
bilities equal to 0.75 and 0.25 respectively. From a training set we first identify
the 4 basis functions using the same procedure as described in Appendix A. Then
we go through the same curve fitting step again and find two SIRDS directions.
Signals in the test set are then projected to the obtained SIRDS directions. 1000
simulations with k=1,3, ... |15 are carried out, the result, Figure B.1.c. The
lowest average error rate of 22.68% for test set is reached at k=15 with an av-
erage standard deviation of 0.056. For comparison, the same simulation data is.
also used to carry out the LDA analysis and k-NN analysis for the original 60 .
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variables. The average error for test set for LDA is 26.63% (Figure B.1.a), much
higher than the k-NN results for the 6 base functions. The k-NN analysis for the
original 60 variables are also consistently worse than that of the 6 base functions
one, Figure B.1.b.

1 3 5 7 9 11 13 15 13 § 7 9 11 13 15
k k

Figure B.1 Box-Plots for Simulation Result with 1000 runs: (a) LDA with
60 original variables; (b) k-nearest-neighbor classifier with 60 original variables;
(c) k-nearest-neighbor classifier with 6 basis functions.

C. LDA with 60 predictors. The resubstitution error rate of Fisher’s linear
discriminant analysis with the original sonar data is 9.615%, which corresponds
‘to 20 misclassified signals (12 metal signals and 8 rock signals each), Figure
C.1. We suspect that this 9.615% resubstitution error rate is too low to be true.
Since there are only 208 subjects in total with 60 variables, the estimation of the
covariance matrix will be unstable, which may create a problem of overfitting.
We carry out the following leave-one-out procedure to verify this suspicion. Each
time we use one of the 208 signals as a test signal and use the other 207 signal
to find the Fisher’s linear discriminant function for predicting the class label of
that selected test signal. Among all 208 runs, 51 signals are misclassified which
corresponds to a leave-one-out error rate of 24.52%. This leave-one-out error
rate of 24.52% is much higher than the resubstitution error rate of 9.615% by the
single run linear discriminant analysis for the full 208 cases.
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8 cases

1 4 12 cases

LDF1

Figure C.1 Fisher’s linear discriminant analysis for the full sonar data set
with 20 misclassified signals. The upper and lower histograms represent the dis-
tributions of observations projected onto the Fisher’s linear discriminant function
(LDF) of the original 60 variables from the metal (y=1) and rock (y=2) groups
respectively. The dashed line is the cutting point for prediction from LDF. The
black bars represent the cases that are misclassified by LDF.
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