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I. INTRODUCTION  

 
The ability to recognize a person is a task that human 

risibly performs but one that computers to date have been 
unable to perform robustly. For the automatic user 
identification or surveillance, various researches using 
human face information are performed using biometric 
information (fingerprint, face, iris, voice, vein, etc.) [1]. In 
a biometric identification system, the face recognition 
with a non-touch style is a very challenging research area, 
next to the fingerprint. Many different human face 
recognition algorithms have been developed and 
motivated by the face recognition is non-touch style, for 
the last 30 years [1]. There are several problems that are 
easily influenced by lighting illuminance and encountered 
difficulties when the face is angled away from the camera, 
especially in two dimensional face recognition systems. To 
solve these problems, a 3D face recognition system using 
stereo matching, laser scanner and etc. has been developed 
[2-3].  

Broadly speaking, two approaches have emerged to 
recognize the face. One type employs the facial feature 

based approach and the other is the area based approach 
[4-5]. Recently, as the 3D system is being cheaper, smaller, 
and faster than it used to be, the research on the 3D face 
image is performed more actively [2-3]. Many researchers 
have used differential geometry tools for computing the 
curvatures in 3D face [6]. Hiromi et al. [7] treated the 
problem of 3D shape recognition with rigid free-form 
surfaces. Each face in the input images and the model 
database are represented as an Extended Gaussian Image 
(EGI), constructed by mapping principal curvatures and 
their directions. Gordon [8] presented the study of face 
recognition based on depth and curvature features. To find 
face specific descriptors, he used the curvatures of the face. 
Comparison of the two faces was made based on the 
relationship between the spacing of the features. Lee and 
Milios [9] extracted the convex regions of the face by 
segmenting the range of the images based on the sign of 
the mean and Gaussian curvature at each point. For each 
of these convex regions, the Extended Gaussian Image 
(EGI) was extracted and then used to match the facial 
features of the two face images. One of the most 
successful techniques of the face recognition as statistical 
method is principal component analysis (PCA), 
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specifically eigenfaces [10-11]. However, it is not ideal for 
classification purpose as it retains unwanted variations 
occurring due to diversified face shape and face poses. To 
overcome this problem, proposed method was an 
enhancement known as the Fisherface method, or Fisher’s 
linear discriminant (FLD), linear discriminant analysis 
(LDA) [12]. Especially, Zhao et al. [22] suggested 
multiple feature domains based on the face recognition 
using the FLD through the dividing (4 types) of an 
original image. 

The single characteristics, widely used to detect 
pedestrians and objects, are incorporated edge [13], 
appearance [14], local binary pattern (LBP) [15], 
histogram of oriented gradients (HOG) [16], Haar-like [17] 
and wavelet coefficient [18]. HOG characteristics or 
improved HOG characteristics are widely utilized in the 
methods for the recognizing pedestrians by using the 
automobile vision. Zhu et al. [19] applied the HOG 
characteristics based on variable block size to improve 
detection speed.  Further, Watanabe et al. [20] utilized 
co-occurrence HOG characteristics, and Wang et al. [21] 
utilized HOG-LBP human detection to improve detection 
accuracy. 

In this paper, a novel face recognition method is 
introduced using the face curvatures and histogram of 
gradients oriented algorithm presented well personal 
characteristics and reduced the feature dimension. 
Moreover, the normalized facial pose images using SVD 
are considered to improve the recognition rate, as the 
preprocessing. 
 This paper is organized as follow. In section II, this paper 
explains the face pose normalization to improve the 
recognition rate. Section III describes the face surface 
curvature and HOG including personal feature information. 
To classify the person, linear discriminant analysis is 
introduced in section IV. The results of their evaluation 
and a detailed performance analysis are presented in 
section V. Section VI concludes this paper. 
 

II. Face Pose Normalization [22] 
 
The nose is protruded shape and located in the middle of 

the face. So it can be used as the reference point, firstly we 
tried to find the nose tip using the iterative selection 
method, after extraction of the face from the 3D face 
image [23]. Usually, face recognition systems suffer from 
drastic losses in performance when the face is not 
correctly oriented. The normalization process proposed 
here is a sequential procedure that aims at putting the face 
shapes in a standard spatial position. The processing 
sequence is panning, rotation and tilting. 
 

2.1 Find Nose Tip 

 In preprocessing, a given 3D image is divided into face 
and background areas. Useless areas around the head and 
clothing parts contain too much erroneous data to process. 
Firstly, the nose tip is found by the iteration selection 
method(ISM) after using Sobel processing, as shown in 
Figure 1 (b). 
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where M and N represent the size of the image. And P 
stands for the depth image and B is the binary image. In 
the result area, the new threshold value is calculated by 
using an average, and the new area is extracted by using P. 
By the repeated processes (1), the nose tip point can be 
found as the highest value on the range face. The results 
are shown in Figure 1 (c). 
 

          
      (a)             (b)             (c) 

Fig. 1. Preprocessing to find the nose tip using ISM (a) 
Original image, (b) Sobel processed image (c) The result 
of nose tip finding 
 
2.2 Face Normalization 

In feature recognition of 3D faces, one has to take into 
consideration the obtained frontal posture. Face 
recognition systems suffer from drastic losses in 
performance when the face is not correctly oriented [24]. 
The normalization process proposed here is a sequential 
procedure that aims at putting the face shapes in a 
standard spatial position. Obtained face poses consist of 
front, right rotation, left rotation, right panning, left 
panning, up tilt, and down tilt.  

If the pose transform matrix is PA
),,,,,( DURLRL TTPPRRP= , PA  can be calculated with 

equation (2). 
 

PP FA →   Transform Matrix PA :            (2) 

PPPF CAC =  
+= PFP CCA  
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where PFC  is transformed front pose for each pose, PC  

means left rotation )( LR , right rotation )( RR , left 

panning )( LP , right panning )( RP , up tilt )( UT , and 

down tilt )( DT , which has PCA coefficient matrix for all 

the training sets. +C  is the pseudo inverse matrix using 

Singular Value Decomposition (SVD) for the matrix . The 
reason why we have to use is that it is difficult to get the 
reverse matrix from the matrix   which has no square 
matrix. The equation (3) explains the brief algorithm for 
the pose transform. 

1. H  = input image        (3) 

2. e  = projection Eigenface space( H ) 

3. P  = pose estimation (e ) 

4. e′  = pose transform ( e , P )  eAP  

5. H~  = reconstruction using Eigenvector and mean face 

(e′ ) 
 

III. Surface Curvature and HOG 
 
3.1 Surface Curvature 
 
 For each data point on the facial surface, the principal, 
Gaussian and mean curvatures are calculated and the signs 
of those (positive, negative and zero) are used to 
determine the surface type at every point. The z(x, y) 
image represents a surface where the individual Z-values 
are surface depth information. The curvatures and related 
variables are computed for the pixel at location )0,0( . 

Each pixel has an intensity value, a gray ton value or a 
depth value ),( yxz . These intensity values define a 

surface in a three dimensional space as shown in Figure 2. 
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Fig. 2. Principal curvatures {k1, k2} and directivity 

},{ 21 ee rr
 at a point on the surface. 

 
Here, x and y are the two spatial coordinates. We now 

closely follow the formalism introduced by Peet and 
Sahota [25], and specify any point on the surface by its 
position vector: 

 
kyxzyjxiyxR ),(),( ++=                  (4) 

The first fundamental form of the surface is the expression 
for the element of arc length of curves on the surface 
which pass through the point under consideration. It is 
given by: 

 
222 2 GdyFdxdyEdxdRdRdsI ++=⋅==          (5) 
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The second fundamental form arises from the curvature of 
these curves at the point of interest and in the given 
direction: 
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Casting the above expression into matrix form with; 
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the two fundamental forms become: 

AVVI t=  BVVI t=                         (11) 

Then the curvature of the surface in the direction defined 
by V is given by: 

AVV
BVVk

t

t

=                                 (12) 

Extreme values of k are given by the solution to the 
eigenvalue problem: 

0)( =− VkAB                              (13) 

or 

0=
−−
−−

kGgkFf
kFfkEe

                       (14) 

which gives the following expressions for k1 and k2, the 
minimum and maximum curvatures, respectively: 



Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis 

174 

 

{ 2

1 )2[(2 FfGegEGeFfgEk −+−+−=  

} )(2/)])((4 22/122 FEGFEGfeg −−−−   (15) 

(12)

{ 2

2 )2[(2 FfGegEGeFfgEk −+++−=  

} )(2/)])((4 22/122 FEGFEGfeg −−−−   (16) 

 

(13)

Here we have ignored the directional information 
related to k1 and k2, and chosen k2 to be the larger of the 
two. For the present work, however, this has not been done. 
The two quantities, k1 and k2, are invariant under rigid 
motions of the surface. This is a desirable property for us 
since the cell nuclei have no predefined orientation on the 
slide (the x – y plane). 

The Gaussian curvature K and the mean curvature M 
are defined by 

 

21kkK =  ,  ( ) 2/21kkM =                    (17) 

 

(14)

which gives k1 and k2, the minimum and maximum 
curvatures, respectively. It turns out that the principal 
curvatures, k1 and k2, and Gaussian are best suited to the 
detailed characterization for the facial surface, as 
illustrated in Fig. 1. For the simple facet model of the 
second order polynomial of the form, i.e. a 3 by 3 window 
implementation in our range images, the local region 
around the surface is approximated by a quadric 
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(15)

and the practical calculation of principal and Gaussian 
curvatures is extremely simple. 
 
3.2 Histogram of Oriented Gradients 
 HOG [23] converts the distribution directions of 
brightness for a local region into a histogram to express 
them in feature vectors, which is utilized to express the 
shape characteristics of an object.  And it is influenced a 
little from an effect of illumination by converting the 
distribution of near pixels for a local region into a 
histogram, and has a strong feature for a geometric change 
of local regions.  The following is a detailed explanation 
on how HOG description is calculated. 
 
3.2.1 Gradient Computation 
 Value of gradient at every image pixel is calculated by 
derivatives fx and fy in x and y direction by convolving the 
filter mask [-1 0 1] and [-1 0 1]T. Refer equation (19) and 
(20). 
 

]101[−⊗= If x                        (19) 

T
y If ]101[−⊗=                       (20) 

 
where I is an example gray scale image and ⊗ is the 

convolution operation. The gradient magnitudes ),( yxm  

and orientation direction ),( yxθ  for each pixel are 

calculated by 
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3.2.2 Orientation Binning 
 This stage defines production of an encoding that is 
sensitive to local image content. The image windows are 
divided into 8x8 rectangular small spatial regions call cells, 
as shown in figure 1 (c). Similar to [20], we used unsigned 
gradients in conjunction with nine bins for every cell (a 
bin corresponds to 20o). The 8x8 cell magnitude pixels are 
accumulated in one of the nine bins according to their 
orientation direction. Figure 1 (c) depicts a graphical 
representation on how the gradient angle range is binned 
in its respective cell 
 

    

(a)          (b)        (c)         (d) 
Fig. 3. The example of 3D faces HOG normalization.  (a) 
3D facial image (b) Mean curvature (c) cell image (10x10 
pixels) (d) normalization by blocks (a block is 2x2 cells). 
 
3.2.3 Block Normalization 
Directional histograms for brightness prepared in each of 

the cells were normalized as a block of 3x3 cells. This is 
performed by grouping cells in larger spatial regions 
called blocks. Characteristic quantities (9 dimensions) of 
row i, column j, Cell (i, j) are expressed as Fi,j=[F1, F1, 
··· ,F9]. The characteristic quantities of k’th block (81 
dimensions) may be expressed as: 
 

[ 2121 ,,,, ++++= ijijjijiijk FFFFFB
]22211211 ,,, ++++++++ jijijiji FFFF      (23) 

 
Normalization processes are summarized in figure 1 (d), 
where a movement of block is based on the fact that it is 
moved to the right side and to the lower side by one each 
cell. And the feature vectors are saved by concatenation 
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(a)                   (b) 

Fig. 5. Distribution of minimum curvature and maximum 
curvature for around the nose region; (a) 3 dimensional graph for 
minimum curvature, (b) 3 dimensional graph for maximum 
curvature 
 

 
Fig. 6. Displayed each component area. 
 
Generate the membership grade based on the LDA 
distance ( id ) information between the test image and the 

training set produced in the previous section. Using this 
distance, we follow the method introduced in [26]. 
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where i=1,2,3,4, j=1,2,. . . , 296, i is the number of 
classifier and j is the index of the training set. And kN  is 

the number of samples in kth class kC . 

The data sets have been extracted with the aid of LDA. 
The cheek part among the face components represented 
the highest recognition rate, 92.2% for norm2 and LDA. It 
shows that cheek area has outstanding curvature features, 
because of including the nose tip area and both sides of 
cheek. And also it means that it has very different shapes 
or surface feature for each person. In average analysis, the 
recognition of adapted curvature and HOG method 
showed 90.6% - k2, increased more than norm2 methods. 
Additionally, in the curvature feature, k2 showed higher 
recognition rate than k1. 
 

VI. CONCLUSION 
 
We have introduced, in this paper, a new practical 

implementation of a person verification system using 
curvature-HOG based on the component face images. The 
underlying motivations of our approach originate from the 
observation that the surface curvature of the face has 

different shape based on the face components. And 
Ordinary HOG has two kinds of spatial region: small 
(cells) and large (blocks). And it is based on overlapping 
and dens encoding of image regions. To classify the faces, 
LDA and norm2 were used. It has been experimentally 
demonstrated that the aggregation of classifiers operating 
on four component face image sets generated by area 
based led to better classification results than norm2 
method. Furthermore, we also confirmed that the 
curvature k2 has higher recognition rate than the k1. 
From the experimental results, we proved that the 

process of the face recognition may use lower dimension, 
less parameters, and less calculation than earlier 
suggestion. We consider that there are many future 
experiments that could be done to extend this study. 
 
 
Table 1. The comparision of the recognition rate (%) 

Method C E M N Avg.
k1 Norm2 92.2 90.5 83.9 83.9 88.5 

LDA 90.8 89.9 90.2 88.7 89.9 

k2 Norm2 89.2 89.9 83.5 84.1 86.7 

LDA 90.8 90.8 90.2 90.5 90.6 
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