• Title/Summary/Keyword: $l_1$-norm

Search Result 190, Processing Time 0.028 seconds

SOME Lq INEQUALITIES FOR POLYNOMIAL

  • Chanam, Barchand;Reingachan, N.;Devi, Khangembam Babina;Devi, Maisnam Triveni;Krishnadas, Kshetrimayum
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.331-345
    • /
    • 2021
  • Let p(z)be a polynomial of degree n. Then Bernstein's inequality [12,18] is $${\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;n\;{\max_{{\mid}z{\mid}=1}{\mid}(z){\mid}}$$. For q > 0, we denote $${\parallel}p{\parallel}_q=\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}$$, and a well-known fact from analysis [17] gives $${{\lim_{q{\rightarrow}{{\infty}}}}\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}={\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p(z){\mid}$$. Above Bernstein's inequality was extended by Zygmund [19] into Lq norm by proving ║p'║q ≤ n║p║q, q ≥ 1. Let p(z) = a0 + ∑n𝜈=𝜇 a𝜈z𝜈, 1 ≤ 𝜇 ≤ n, be a polynomial of degree n having no zero in |z| < k, k ≥ 1. Then for 0 < r ≤ R ≤ k, Aziz and Zargar [4] proved $${\max\limits_{{\mid}z{\mid}=R}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;{\frac{nR^{{\mu}-1}(R^{\mu}+k^{\mu})^{{\frac{n}{\mu}}-1}}{(r^{\mu}+k^{\mu})^{\frac{n}{\mu}}}\;{\max\limits_{{\mid}z{\mid}=r}}\;{\mid}p(z){\mid}}$$. In this paper, we obtain the Lq version of the above inequality for q > 0. Further, we extend a result of Aziz and Shah [3] into Lq analogue for q > 0. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

SPECTRAL ANALYSIS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION I: POSITIVENESS AND CONTRACTIVENESS

  • Choi, Sung-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.27-47
    • /
    • 2012
  • It has become apparent from the recent work by Choi et al. [3] on the nonlinear beam deflection problem, that analysis of the integral operator $\mathcal{K}$ arising from the beam deflection equation on linear elastic foundation is important. Motivated by this observation, we perform investigations on the eigenstructure of the linear integral operator $\mathcal{K}_l$ which is a restriction of $\mathcal{K}$ on the finite interval [$-l,l$]. We derive a linear fourth-order boundary value problem which is a necessary and sufficient condition for being an eigenfunction of $\mathcal{K}_l$. Using this equivalent condition, we show that all the nontrivial eigenvalues of $\mathcal{K}l$ are in the interval (0, 1/$k$), where $k$ is the spring constant of the given elastic foundation. This implies that, as a linear operator from $L^2[-l,l]$ to $L^2[-l,l]$, $\mathcal{K}_l$ is positive and contractive in dimension-free context.

A Study on Effects of Cyperus rotundus L. Essential Oil Inhalation on Stress Relaxation with HRV, EEG (향부자 정유 흡입이 스트레스 이완에 미치는 영향)

  • Uhm, Ji-Tae;Bae, Seon Young;Park, Kil-Soon;Kim, Kyoung-Shin
    • Journal of Haehwa Medicine
    • /
    • v.22 no.2
    • /
    • pp.81-92
    • /
    • 2014
  • Objective : The purpose of this study was to assess the effects of Cyperus rotundus L. essential oil on relaxation in highly stressed volunteers with heart rate variability(HRV) and electroencephalography(EEG). Methods : 11 highly stressed volunteers participated in this study. The volunteers were examined with HRV and EEG before and after inhalation of Cyperus rotundus L. essential oil. Results : After smelling Cyperus rotundus L. essential oil, mean RR(mean of RR intervals) was incresed significantly(p<0.01), mean HRV(mean of heart rate), HF(high frequency) were decreased significantly(p<0.01). norm LF(low frequency), LF/HF ratio were decreased significantly(p<0.05), norm HF(normalized high frequency) was increased significantly(p<0.05) on HRV. After smelling Cyperus rotundus L. essential oil, relative ${\theta}$ power was decreased significantly(p<0.05) at P3(left parietal) and relative ${\alpha}$ power was increased significantly(p<0.05) at Fp1(left prefrontal), Fp2(right prefrontal) and relative ${\beta}$ power was decreased significantly(p<0.05) at Fp1(left prefrontal) and relative ${\gamma}$ power was decreased significantly(p<0.05) at Fp1(left prefrontal) on EEG. Conclusions : This results show that inhalation of Cyperus rotundus L. essential oil effects on relaxation and decreasing stress.

How to Smooth Data in Two Way Tables with the Order Restriction

  • Chung, Seiyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.2 no.1
    • /
    • pp.65-73
    • /
    • 1989
  • To smooth a given data in two-way tables with the order restriction, we propose the dual problem and construct an algorithm utilizing the network flows which ends up with the minimum L1-norm after a finite number of iterations.

  • PDF

HARMONIC OPERATORS IN $L^p(V N(G))$

  • Lee, Hun Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.319-329
    • /
    • 2012
  • For a norm 1 function ${\sigma}$ in the Fourier-Stieltjes algebra of a locally compact group we define the space of ${\sigma}$-harmonic operators in the non-commutative $L^p$-space associated to the group von Neumann algebra of G. We will investigate some properties of the space and will obtain a precise description of it.

A goodness-of-fit test for exponentiality with censored samples (중도절단 표본의 지수분포성 적합도 검정을 위한 새로운 통계량)

  • 김부용
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.289-302
    • /
    • 1993
  • A goodness-of-fit test for the two-parameter exponential distribution, for use with the singly Type I and Type II right censored samples, is proposed. The test statistic is based on the $L_1$-norm of discrepancy between the cumulative distribution function and the empirical distribution function. To deal with the unknown parameters problem, the K- transformation is considered and modified to be applied to the censored samples. Rosenblatt's transformation is extended to the cases of Type I and Type II censored samples, in order to transform the censored samples into the complete ones. The critial values of the test statistic are obtained by Monte Carlo simulations for some finite sample sizes. The power studies are conducted to compare the proposed test with the Pettitt(1977) test for exponentiality with censored samples. It appears that the proposed test has relatively good power properties for moderate and large sample sizes.

  • PDF

A hybrid-separate strategy for force identification of the nonlinear structure under impact excitation

  • Jinsong Yang;Jie Liu;Jingsong Xie
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.119-133
    • /
    • 2023
  • Impact event is the key factor influencing the operational state of the mechanical equipment. Additionally, nonlinear factors existing in the complex mechanical equipment which are currently attracting more and more attention. Therefore, this paper proposes a novel hybrid-separate identification strategy to solve the force identification problem of the nonlinear structure under impact excitation. The 'hybrid' means that the identification strategy contains both l1-norm (sparse) and l2-norm regularization methods. The 'separate' means that the nonlinear response part only generated by nonlinear force needs to be separated from measured response. First, the state-of-the-art two-step iterative shrinkage/thresholding (TwIST) algorithm and sparse representation with the cubic B-spline function are developed to solve established normalized sparse regularization model to identify the accurate impact force and accurate peak value of the nonlinear force. Then, the identified impact force is substituted into the nonlinear response separation equation to obtain the nonlinear response part. Finally, a reduced transfer equation is established and solved by the classical Tikhonove regularization method to obtain the wave profile (variation trend) of the nonlinear force. Numerical and experimental identification results demonstrate that the novel hybrid-separate strategy can accurately and efficiently obtain the nonlinear force and impact force for the nonlinear structure.