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Abstract. First we present the explicit formula for the norm of a (continuous) linear

functional of L(2d∗(1, w)2)∗. Using this formula and results of [16] and [17], we show that

every extreme bilinear form of the unit ball of L(2d∗(1, w)2) is exposed.

1. Introduction

We write BE for the closed unit ball of a real Banach space E and the dual
space of E is denoted by E∗. x ∈ BE is called an extreme point of BE if y, z ∈ BE

with x = 1
2 (y + z) implies x = y = z. x ∈ BE is called an exposed point of BE if

there is a f ∈ E∗ so that f(x) = 1 = ∥f∥ and f(y) < 1 for every y ∈ BE \ {x}.
It is easy to see that every exposed point of BE is an extreme point. We denote
by expBE and extBE the sets of exposed and extreme of BE , respectively. For
n ≥ 2, we denote by L(nE) the Banach space of all continuous n-linear forms on
E endowed with the norm ∥T∥ = sup∥xk∥=1,1≤k≤n |T (x1, · · · , xn)|. Ls(

nE) denotes
the subspace of all continuous symmetric n-linear forms on E. A mapping P :
E → R is a continuous n-homogeneous polynomial if there exists T ∈ Ls(

nE)
such that P (x) = T (x, · · · , x) for every x ∈ E. We denote by P(nE) the Banach
space of all continuous n-homogeneous polynomials from E into R endowed with
the norm ∥P∥ = sup∥x∥=1 |P (x)|. For more details about the theory of multilinear
mappings and polynomials on a Banach space, we refer to [7]. We will denote by
T ((x1, y1), (x2, y2)) = ax1x2+by1y2+

c
2 (x1y2+x2y1) and P (x, y) = ax2+by2+cxy

a symmetric bilinear form and a 2-homogeneous polynomial on a real Banach space
of dimension 2 respectively. For 1 ≤ p ≤ ∞, we let l2p = R2 with the lp-norm. Note
that in ([6], Theorem 1, remark after Theorem 1, and Theorem 2) the following
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results are proved: (i) expBP(2l21)
= extBP(2l21)

\{±(x2 − y2 ± 2xy)};
(ii) expBP(2l2∞) = extBP(2l2∞)\{±( 12x

2 − 1
2y

2 ± xy)}.
The author [11] characterized expBP(2l2p)

as follows: (i) If 1 < p < 2, then
expBP(2l2p)

= extBP(2l2p)
;

(ii) If 2 < p < ∞, then expBP(2l2p)
= extBP(2l2p)

\{±x2,±y2)}.
We refer to ([1–6, 8–22] and references therein) for some recent work about

extremal properties of multilinear mappings and homogeneous polynomials on some
classical Banach spaces.

We denote the 2-dimensional real predual of the Lorentz sequence space with a
positive weight 0 < w < 1 by

d∗(1, w)
2 := {(x, y) ∈ R2 : ∥(x, y)∥d∗ := max{|x|, |y|, |x|+ |y|

1 + w
}.

Very recently, the author [16] characterizes the extreme points of the unit ball of
L(2d∗(1, w)

2). The author [17] also proves that every extreme symmetric bilinear
form of the unit ball of Ls(

2d∗(1, w)
2) is exposed.

In this paper we first present the explicit formula for the norm of a (continuous)
linear functional of L(2d∗(1, w)

2)∗. Using the explicit formula for the norm of a
(continuous) linear functional of L(2d∗(1, w)

2)∗ and results of [16] and [17], we
prove that every extreme bilinear form of the unit ball of L(2d∗(1, w)

2) is exposed.

2. The Results

If T ∈ L(2d∗(1, w)
2), then T ((x1, y1), (x2, y2)) = ax1x2+ by1y2+ cx1y2+dx2y1

for some reals a, b, c, d.

Theorem 2.1.([16], Theorem 2.1) Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 +
cx1y2 + dx2y1 ∈ L(2d∗(1, w)

2). Then there exists (unique) T
′
((x1, y1), (x2, y2)) =

a∗x1x2 + b∗y1y2 + c∗x1y2 + d∗x2y1 ∈ L(2d∗(1, w)
2) such that a∗, b∗, c∗, d∗ ∈

{±a,±b,±c,±d} with a∗ ≥ b∗ ≥ 0, c∗ ≥ |d∗| and ∥T∥ = ∥T ′∥ and that T is ex-
treme if and only if T

′
is extreme.

Theorem 2.2.([16], Theorem 2.2) Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 +
cx1y2 + dx2y1 ∈ L(2d∗(1, w)

2) with a ≥ |b|, c ≥ |d|. Then

∥T∥ = max{a+bw2+(c+d)w, a−bw2+(c−d)w, (a+b)w+c+dw2, (a−b)w+c−dw2}.

Theorem 2.3.([16], Theorem 2.4) Let S((x1, y1), (x2, y2)) = ax1x2 + by1y2 +
cx1y2 + dx2y1 ∈ L(2d∗(1, w)

2) with a ≥ b ≥ 0, c ≥ |d|. Then
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(a) Let w <
√
2− 1. S is extreme if and only if

S ∈ {x1x2, x1y2,
1

1 + w
(x1x2 + x1y2),

1

(1 + w)2
(x1x2 + y1y2 + x1y2 + x2y1),

1

1 + w2
(x1x2 + y1y2 + wx1y2 − wx2y1),

1

1 + w2
(wx1x2 + wy1y2 + x1y2 − x2y1),

1

1 + 2w − w2
(x1x2 + y1y2 + x1y2 − x2y1),

1

(1 + w)2(1− w)
(x1x2 + y1y2 + (1− w − w2)x1y2 − wx2y1),

1

(1 + w)2(1− w)
((1− w − w2)x1x2 + wy1y2 + x1y2 − x2y1)}.

(b) Let w =
√
2− 1. Then S is extreme if and only if

S ∈ {x1x2, x1y2,
1√
2
(x1x2 + x1y2),

1

2
(x1x2 + y1y2 + x1y2 + x2y1),

√
2

4
((
√
2 + 1)(x1x2 + y1y2) + x1y2 − x2y1),

√
2

4
(x1x2 + y1y2 + (

√
2 + 1)(x1y2 − x2y1))}.

(c) Let w >
√
2− 1. Then S is extreme if and only if

S ∈ {x1x2, x1y2,
1

1 + w
(x1x2 + x1y2),

1

(1 + w)2
(x1x2 + y1y2 + x1y2 + x2y1),

1

1 + 2w − w2
(x1x2 + y1y2 + x1y2 − x2y1),

1

1 + w2
(
1− w

1 + w
(x1x2 + y1y2) + x1y2 − x2y1),

1

1 + w2
(x1x2 + y1y2 +

1− w

1 + w
(x1y2 − x2y1)),

1

2 + 2w
(x1x2 + y1y2 + (2 + w)x1y2 −

1

w
x2y1),

1

2 + 2w
((2 + w)x1x2 +

1

w
y1y2 + x1y2 − x2y1)}.

Theorem 2.4.([16], Theorem 2.5) T ∈ extBL(2d∗(1,w)2) if and only if there exist
n ∈ N and S((x1, y1), (x2, y2))
= ax1x2 + by1y2 + cx1y2 + dx2y1 ∈ extBL(2d∗(1,w)2) with a ≥ |b|, c ≥ |d| such

that T ((x1, y1), (x2, y2)) := S((u
(n)
1 , v

(n)
1 ), (u

(n)
2 , v

(n)
2 ))◦· · ·◦((u(1)

1 , v
(1)
1 ), (u

(1)
2 , v

(1)
2 )),
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where

for j = 1, . . . , n, ((u
(j)
1 , v

(j)
1 ), (u

(j)
2 , v

(j)
2 )) ∈ {((±x1,±y1), (±x2,±y2)),

((±x2,±y2), (±x1,±y1)), ((±x1,±y1), (±y2,±x2)), ((±y2,±x2),

(±x1,±y1)), ((±y1,±x1), (±x2,±y2)), ((±x2,±y2), (±y1,±x1)),

((±y2,±x2), (±y1,±x1)), ((±y1,±x1), (±y2,±x2))}.

Theorem 2.5. Let f ∈ L(2d∗(1, w)
2)∗ and α = f(x1x2), β = f(y1y2),

δ = f(x1y2), γ = f(x2y1).

(a) Let w <
√
2− 1. Then

∥f∥ = max{|α|, |β|, |δ|, |γ|, 1

1 + w
|α+ γ|, 1

1 + w
|α+ δ|,

1

1 + w
|β + γ|, 1

1 + w
|β + δ|, 1

(1 + w)2
(|α+ β|+ |δ + γ|),

1

(1 + w)2
(|α− β|+ |δ − γ|), 1

1 + 2w − w2
(|α+ β|+ |δ − γ|),

1

1 + 2w − w2
(|α− β|+ |δ + γ|), 1

1 + w2
(|α+ β|+ w|δ − γ|),

1

1 + w2
(|α− β|+ w|δ + γ|), 1

1 + w2
(|δ + γ|+ w|α− β|),

1

1 + w2
(|δ − γ|+ w|α+ β|),

1

(1 + w)2(1− w)
(|α+ β|+ |(1− w − w2)δ − wγ|)

1

(1 + w)2(1− w)
(|α− β|+ |(1− w − w2)δ + wγ|),

1

(1 + w)2(1− w)
(|α+ β|+ |(1− w − w2)γ − wδ|)

1

(1 + w)2(1− w)
(|α− β|+ |(1− w − w2)γ + wδ|),

1

(1 + w)2(1− w)
(|δ + γ|+ |(1− w − w2)α− wβ|),

1

(1 + w)2(1− w)
(|δ − γ|+ |(1− w − w2)α+ wβ|),

1

(1 + w)2(1− w)
(|δ + γ|+ |(1− w − w2)β − wα|),

1

(1 + w)2(1− w)
(|δ − γ|+ |(1− w − w2)β + wα|)}.
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(b) Let w =
√
2− 1. Then

∥f∥ = max{|α|, |β|, |δ|, |γ|, 1√
2
|α+ γ|, 1√

2
|α+ δ|, 1√

2
|β + γ|,

1√
2
|β + δ|,

√
2

4
((
√
2 + 1)|α+ β|+ |δ − γ|),

√
2

4
((
√
2 + 1)|δ + γ|+ |α− β|),

√
2

4
((
√
2 + 1)|α− β|+ |δ + γ|),

√
2

4
(|α+ β|+ (

√
2 + 1)|δ − γ|)}.

(c) Let
√
2− 1 < w. Then

∥f∥ = max{|α|, |β|, |δ|, |γ|, 1

1 + w
|α+ γ|, 1

1 + w
|α+ δ|,

1

1 + w
|β + γ|, 1

1 + w
|β + δ|, 1

(1 + w)2
(|α+ β|+ |δ + γ|),

1

(1 + w)2
(|α− β|+ |δ − γ|), 1

1 + 2w − w2
(|α+ β|+ |δ − γ|),

1

1 + 2w − w2
(|α− β|+ |δ + γ|), 1

1 + w2
(
1− w

1 + w
|α+ β|+ |δ − γ|),

1

1 + w2
(|α− β|+ 1− w

1 + w
|δ + γ|), 1

2 + 2w
(|α+ β|+ |(2 + w)δ − 1

w
γ|),

1

2 + 2w
(|α+ β|+ |(2 + w)γ − 1

w
δ|), 1

2 + 2w
(|(2 + w)α− 1

w
β|+ |δ + γ|),

1

2 + 2w
(|(2 + w)β − 1

w
α|+ |δ + γ|)}.

Proof. It follows from Theorems 2.3–4 since

∥f∥ = sup{|f(T )| : T ∈ extBL(2d∗(1,w)2)}. �

Theorem 2.6.([17], Theorem 2.3) Let E be a real Banach space such that extBE

is finite. Suppose that x ∈ extBE satisfies that there exists an f ∈ E∗ such that
f(x) = 1 = ∥f∥ and |f(y)| < 1 for every y ∈ extBE\{x}. Then x ∈ expBE.

Using Theorems 2.1–6, we classify the exposed bilinear forms of the unit ball of
L(2d∗(1, w)

2).

Theorem 2.7. expBL(2d∗(1,w)2) = extBL(2d∗(1,w)2).

Proof. Let L = ax1x2 + by1y2 + cx1y2 + dx2y1 ∈ extBL(2d∗(1,w)2). By Theorems 2.1
and 2.5, we may assume that a ≥ |b|, c ≥ |d|. Now we can use Theorem 2.3.

Case 1: w <
√
2− 1

Claim: x1x2 is exposed
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Let f ∈ L(2d∗(1, w)
2)∗ and α = f(x1x2), β = f(y1y2), δ = f(x1y2), γ =

f(x2y1). Let α = 1, β = 0 = δ = γ. By Theorem 2.5(a), f(x1x2) = 1 = ∥f∥
and |f(T )| < 1 for every T ∈ extBL(2d∗(1,w)2) with T ̸= x1x2. By Theorem 2.6, it
is exposed.

Claim: 1
1+w (x1x2 + x1y2) is exposed

Let α = 1+w
2 = δ, β = 0 = γ. By Theorem 2.5(a), f( 1

1+w (x1x2 + x1y2)) = 1 =

∥f∥ and |f(T )| < 1 for every T ∈ extBL(2d∗(1,w)2) with T ̸= 1
1+w (x1x2 + x1y2). By

Theorem 2.6, it is exposed.

Claim: 1
(1+w)2 (x1x2 + y1y2 + x1y2 + x2y1) is exposed

Let α = 1+w2

2 , β = 1+w2

2 − ϵ, δ = w + ϵ
2 = γ for a sufficiently small ϵ > 0. By

Theorem 2.5(a), f( 1
(1+w)2 (x1x2 + y1y2 + x1y2 + x2y1)) = 1 = ∥f∥ and |f(T )| < 1

for every T ∈ extBL(2d∗(1,w)2) with T ̸= 1
(1+w)2 (x1x2 + y1y2 + x1y2 + x2y1). By

Theorem 2.6, it is exposed.

Claim: 1
1+w2 (x1x2 + y1y2 + wx1y2 − wx2y1) is exposed

Let α = 1
2 = β, δ = w

2 , γ = −w
2 . By Theorem 2.5(a), f( 1

1+w2 (x1x2 + y1y2 +
wx1y2 − wx2y1)) = 1 = ∥f∥ and |f(T )| < 1 for every T ∈ extBL(2d∗(1,w)2) with

T ̸= 1
1+w2 (x1x2 + y1y2 + wx1y2 − wx2y1). By Theorem 2.6, it is exposed.

Claim: 1
1+2w−w2 (x1x2 + y1y2 + x1y2 − x2y1) is exposed

Let w < δ < 1−w2

2 and α = 1+2w−w2−2δ
2 , β = α, γ = −δ. By Theorem 2.5(a),

f( 1
1+2w−w2 (x1x2 + y1y2 + x1y2 − x2y1)) = 1 = ∥f∥ and |f(T )| < 1 for every

T ∈ extBL(2d∗(1,w)2) with T ̸= 1
1+2w−w2 (x1x2 + y1y2 + x1y2 − x2y1). By Theorem

2.6, it is exposed.

Claim: 1
(1+w)2(1−w) (x1x2 + y1y2 + (1− w − w2)x1y2 − wx2y1) is exposed

Let α = 1+ϵ(−1+w+w2)
2 = β, δ = w + ϵ, γ = 0. for a sufficiently small ϵ > 0. By

Theorem 2.5(a), f( 1
(1+w)2(1−w) (x1x2+y1y2+(1−w−w2)x1y2−wx2y1)) = 1 = ∥f∥

and |f(T )| < 1 for every T ∈ extBL(2d∗(1,w)2) with T ̸= 1
(1+w)2(1−w) (x1x2 + y1y2 +

(1− w − w2)x1y2 − wx2y1). By Theorem 2.6, it is exposed.

Case 2: w =
√
2− 1

By the similar argument as Case 1, ±x1x2,± 1√
2
(x1x2+x1y2),± 1

2 [x1x2+y1y2+

x1y2 + x2y1] are exposed. It is enough to show that
√
2
4 [x1x2 + y1y2 + (

√
2 +

1)(x1y2 − x2y1)] is exposed. Let α = 0 = β, δ = 2−
√
2 = −γ. By Theorem 2.5(b),

f(
√
2
4 [x1x2 − y1y2 + (

√
2 + 1)(x1y2 + x2y1)]) = 1 = ∥f∥ and |f(T )| < 1 for every

T ∈ extBL(2d∗(1,w)2) with T ̸=
√
2
4 [x1x2−y1y2+(

√
2+1)(x1y2+x2y1)]. By Theorem

2.6, it is exposed.

Case 3:
√
2− 1 < w

By the similar argument as Case 1, ±x1x2,± 1
1+w (x1x2+x1y2),± 1

(1+w)2 [x1x2+

y1y2 + x1y2 + x2y1],± 1
1+2w−w2 [x1x2 + y1y2 + x1y2 − x2y1)] are exposed.

Claim: 1
1+w2 [x1x2 + y1y2 +

1−w
1+w (x1y2 − x2y1)] is exposed

Let α = 1+w2

2 = −β, δ = γ. By Theorem 2.5(c), f( 1
1+w2 [x1x2 + y1y2 +
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1−w
1+w (x1y2 − x2y1)]) = 1 = ∥f∥ and |f(T )| < 1 for every T ∈ extBL(2d∗(1,w)2)

with T ̸= 1
1+w2 [x1x2 + y1y2 +

1−w
1+w (x1y2 − x2y1)]. By Theorem 2.6, it is exposed.

Claim: 1
2+2w [(2 + w)x1x2 +

1
wy1y2 + (x1y2 − x2y1)] is exposed

Let α = 1− ϵ, β = w2, δ = ϵ(2+w)
2 = −γ for a sufficiently small ϵ > 0. By Theo-

rem 2.5(c), f( 1
2+2w [(2+w)x1x2+

1
wy1y2+(x1y2−x2y1)]) = 1 = ∥f∥ and |f(T )| < 1

for every T ∈ extBL(2d∗(1,w)2) with T ̸= 1
2+2w [(2+w)x1x2− 1

wy1y2+(x1y2+x2y1)].
By Theorem 2.6, it is exposed. 2
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