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Abstract. First we present the explicit formula for the norm of a bilinear form on the

2-dimensional real predual of the Lorentz sequence space d∗(1, w)2. Using this formula,

we classify the extreme points of the unit ball of L(2d∗(1, w)2).

1. Introduction

Let n ∈ N. We write BE and SE for the closed unit ball and sphere of a real
Banach space E respectively and the dual space of E is denoted by E∗. A unit vec-
tor x in E is called an extreme point of BE if y, z ∈ BE with x = 1

2 (y + z) implies
x = y = z. We denote by extBE the sets of all the extreme points of BE . We
denote by L(nE) the Banach space of all continuous n-linear forms on E endowed
with the norm ∥T∥ = sup∥xk∥=1 |T (x1, · · · , xn)|. A n-linear form T is symmetric
if T (x1, . . . , xn) = T (xσ(1), . . . , xσ(n)) for every permutation σ on {1, 2, . . . , n}. We
denote by Ls(

nE) the Banach space of all continuous symmetric n-linear forms on
E. A mapping P : E → R is a continuous n-homogeneous polynomial if there
exists T ∈ Ls(

nE) such that P (x) = T (x, · · · , x) for every x ∈ E. We denote
by P(nE) the Banach space of all continuous n-homogeneous polynomials from E
into R endowed with the norm ∥P∥ = sup∥x∥=1 |P (x)|. For more details about the
theory of multilinear mappings and polynomials on a Banach space, we refer to
[7]. We will denote by T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + cx1y2 + dx2y1 and
P (x, y) = ax2 + by2 + cxy a bilinear form and a 2-homogeneous polynomial on a
real Banach space of dimension 2 respectively.

Since 1998, many authors have been developing the problem of characterizing
extreme points of the unit balls of P(nE) for some classical real Banach spaces.
Choi, Ki and the author [2, Theorem 2.4] showed that a sufficient and necessary
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condition on the coefficients a, b and c for P (x, y) defined on the real space l21 to
have norm 1, is,

(i) (|a| = 1 or |b| = 1) and |c| ≤ 2
or
(ii) |a| < 1, |b| < 1, 2 < |c| ≤ 4 and 4|c| − c2 = 4(|a+ b| − ab).
It was also proved in [2, Theorem 2.6] that P ∈ extBP(2l21)

if and only if

(|a| = |b| = 1, |c| = 2) or a = −b, 2 < |c| ≤ 4, 4a2 = 4|c| − c2.

Choi and the author [3, Theorem 2.2] showed that P ∈ extBP(2l22)
if and only if

(|a| = |b| = 1, |c| = 0) or a = −b, 0 < |c| ≤ 2, 4a2 = 4− c2.

Later, B. Grecu [9] classified the sets extBP(2l2p)
for 1 < p < 2 or 2 < p < ∞. We

denote the 2-dimensional real predual of the Lorentz sequence space with a positive
weight 0 < w < 1 by

d∗(1, w)
2 := {(x, y) ∈ R2 : ∥(x, y)∥d∗ := max{|x|, |y|, |x|+ |y|

1 + w
} }.

Recently, the author [13] characterize the extreme points of the unit ball of
P(2d∗(1, w)

2). In fact, we show that the extreme points of the unit ball of
P(2d∗(1, w)

2) are

±x2, ± y2, ± 1

1 + w2
(x2 + y2), ± 1

(1 + w)2
(x2 + y2 ± 2xy),

±{ax2 − ay2 ± 2
√
a(1− a)xy }(∀ 1

1 + w2
≤ a ≤ 1),

±[ax2 − ay2 ± { 2

(1 + w)2
+ 2

√
1

(1 + w)4
− a2}xy](∀0 ≤ a ≤ 1− w

(1 + w)(1 + w2)
).

Notice that P(nE) and L(nE) are not isometric in general. It is natural to ask the
following question: what are extreme points of the unit ball of L(nE)?

In 2009, the author [12] started the study of characterizing extreme points of the
unit balls of Ls(

nE) and classified the extreme points of the unit ball of Ls(
2l2∞).

Very recently, the author [14] characterize the extreme points of the unit ball of
Ls(

2d∗(1, w)
2).

We refer to ([1–6], [8–20] and references therein) for some recent work about
extremal properties of multilinear mappings and homogeneous polynomials on some
classical Banach spaces.

Continuing the problem of characterizing extreme points of the unit balls of
L(nE), in this paper, we focus on the space L(2d∗(1, w)

2). First we present the ex-
plicit formula for the norm of a bilinear form in L(2d∗(1, w)

2). Using this formula,
we can classify the extreme points of the unit ball of L(2d∗(1, w)

2) by the method
of step by step.
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2. Main Results

If T ∈ L(2d∗(1, w)
2), then T ((x1, y1), (x2, y2)) = ax1x2+ by1y2+ cx1y2+dx2y1

for some reals a, b, c, d.

Theorem 2.1. Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + cx1y2 + dx2y1 ∈
L(2d∗(1, w)

2). Then there exists (unique) T
′
((x1, y1), (x2, y2)) = a∗x1x2+b∗y1y2+

c∗x1y2 + d∗x2y1 ∈ L(2d∗(1, w)
2) such that a∗, b∗, c∗, d∗ ∈ {±a,±b,±c,±d} with

a∗ ≥ b∗ ≥ 0, c∗ ≥ |d∗| and ∥T∥ = ∥T ′∥ and that T is extreme if and only if T
′
is

extreme.

Proof. If a < 0, taking −T , we assume a ≥ 0.
Case 1: |b| > a

Let T
′

1((x1, y1), (x2, y2)) := T ((y1, sign(b)x1), (y2, x2))

= |b|x1x2 + |a|y1y2 + sign(b)dx1y2 + cx2y1.

Then ∥T ′

1∥ = ∥T∥ and T is extreme if and only if T
′

1 is extreme. If sign(b)d ≥ |c|,
then the bilinear form T

′

1 satisfies the conditions of the the theorem. Suppose that
sign(b)d < |c|.

Subcase 1: c ≥ 0
If sign(b)d = |d| or (sign(b)d = −|d|, |d| ≤ |c|),

let T
′

2((x1, y1), (x2, y2)) := T
′

1((x2, y2), (x1, y1))

= |b|x1x2 + |a|y1y2 + |c|x1y2 + sign(b)dx2y1.

Then ∥T ′

2∥ = ∥T∥ and T is extreme if and only if T
′

2 is extreme. Hence, the bilinear
form T

′

2 satisfies the conditions of the theorem. If sign(b)d = −|d|, |d| > |c|,

let T
′

2((x1, y1), (x2, y2)) := T
′

1((x2,−y2), (x1,−y1))

= |b|x1x2 + |a|y1y2 + |sign(b)d|x1y2 − |c|x2y1.

Then ∥T ′

2∥ = ∥T∥ and T is extreme if and only if T
′

2 is extreme. Hence, the bilinear
form T

′

2 satisfies the conditions of the the theorem.
Subcase 2: c < 0

Let T
′

3((x1, y1), (x2, y2)) := T
′

1((−x1, y1), (−x2, y2))

= |b|x1x2 + |a|y1y2 − sign(b)dx1y2 + |c|x2y1.

Applying Subcase 1 to T
′

3, we can find a bilinear form T
′
satisfying the conditions

of the theorem.
Case 2: |b| ≤ a

Let T
′

4((x1, y1), (x2, y2)) := T ((x1, y1), (x2, sign(b)y2))

= ax1x2 + |b|y1y2 + sign(b)cx1y2 + dx2y1.



628 Sung Guen Kim

Applying Case 1 to T
′

4, we can find a bilinear form T
′
satisfying the conditions of

the theorem.

Theorem 2.2. Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + cx1y2 + dx2y1 ∈
L(2d∗(1, w)

2) with a ≥ |b|, c ≥ |d|. Then ∥T∥ = max{a + bw2 + (c + d)w, a −
bw2 + (c− d)w, (a+ b)w + c+ dw2, (a− b)w + c− dw2}.

Proof. Since {(±1, ± w), (±w, ± 1)} is the set of all extreme points of the unit
ball of d∗(1, w)

2 and T is bilinear,

∥T∥ = max{|T ((±1, ± w), (±1, ± w))|, |T ((±1, ± w), (±w, ± 1))|,
|T ((±w, ± 1), (±1, ± w))|, |T ((±w, ± 1), (±w, ± 1))|}.

It follows that

∥T∥ = max{|T ((1, w), (1, w))|, |T ((1, w), (1,−w))|, |T ((1,−w), (1,−w))|,
|T ((1,−w), (1, w))|, |T ((1, w), (w, 1))|, |T ((1, w), (w, − 1))|,
|T ((1, − w), (w, 1))|, |T ((1, − w), (w, − 1))|, |T ((w, 1), (1, w))|,
|T ((w, − 1), (1, w))|, |T ((w, 1), (1, − w))|, |T ((w, − 1), (1, − w))|,
|T ((w, 1), (w, 1))|, |T ((w, 1), (w, − 1))|, |T ((w, − 1), (w, 1))|
|T ((w, − 1), (w, − 1))|}

= max{a+ bw2 + (c+ d)w, a− bw2 + (c− d)w, (a+ b)w + c+ dw2,

(a− b)w + c− dw2}.

By Theorem 2.2, notice that if ∥T∥ = 1 for some T ∈ L(2d∗(1, w)
2), then

|a| ≤ 1, |b| ≤ 1, |c| ≤ 1, |d| ≤ 1.

Theorem 2.3. [14, Theorem 2.3] Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 +
c(x1y2 + x2y1) ∈ Ls(

2d∗(1, w)
2). Then

(a) Let w <
√
2− 1. Then T is extreme if and only if

T ∈ {±x1x2,±y1y2,±
1

1 + w2
(x1x2 + y1y2),

± 1

(1 + w)2
[x1x2 + y1y2 ± (x1y2 + x2y1)],

± 1

1 + w2
[x1x2 − y1y2 ± w(x1y2 + x2y1)],

± 1

1 + w2
[wx1x2 − wy1y2 ± (x1y2 + x2y1)],

± 1

1 + 2w − w2
[x1x2 − y1y2 ± (x1y2 + x2y1)],
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± 1

(1 + w)2(1− w)
[(1− w − w2)x1x2 − wy1y2 ± (x1y2 + x2y1)],

± 1

(1 + w)2(1− w)
[wx1x2 − (1− w − w2)y1y2 ± (x1y2 + x2y1)]}.

(b) Let w =
√
2− 1. Then T is extreme if and only if

T ∈ {±x1x2,±y1y2,±
2 +

√
2

4
(x1x2 + y1y2),±

1

2
[x1x2 + y1y2 ± (x1y2 + x2y1)],

±
√
2

4
[x1x2 + y1y2 ± (

√
2 + 1)(x1y2 + x2y1)],

±
√
2

4
[(
√
2 + 1)(x1y2 − x2y1)± (x1y2 + x2y1)]}.

(c) Let w >
√
2− 1. Then T is extreme if and only if

T ∈ {±x1x2,±y1y2,±
1

1 + w2
(x1x2 + y1y2),

± 1

(1 + w)2
[x1x2 + y1y2 ± (x1y2 + x2y1)],

± 1

1 + 2w − w2
[x1x2 − y1y2 ± (x1y2 + x2y1)],

± 1

1 + w2
[x1x2 − y1y2 ±

1− w

1 + w
(x1y2 + x2y1)],

± 1

1 + w2
[
1− w

1 + w
(x1x2 − y1y2)± (x1y2 + x2y1)],

± 1

2 + 2w
[(2 + w)x1x2 −

1

w
y1y2 ± (x1y2 + x2y1)],

± 1

2 + 2w
[
1

w
x1x2 − (2 + w)y1y2 ± (x1y2 + x2y1)]}.

It is obvious that if a symmetric bilinear form T /∈ extBLs(2d∗(1,w)2), then
T /∈ extBL(2d∗(1,w)2).

Theorem 2.4. Let S((x1, y1), (x2, y2)) = ax1x2 + by1y2 + cx1y2 + dx2y1 ∈
L(2d∗(1, w)

2) with a ≥ b ≥ 0, c ≥ |d|. Then
(a) Let w <

√
2− 1. S is extreme if and only if

S ∈ {x1x2, x1y2,
1

1 + w
(x1x2 + x1y2),

1

(1 + w)2
(x1x2 + y1y2 + x1y2 + x2y1),

1

1 + w2
(x1x2 + y1y2 + wx1y2 − wx2y1),

1

1 + w2
(wx1x2 + wy1y2 + x1y2 − x2y1),

1

1 + 2w − w2
(x1x2 + y1y2 + x1y2 − x2y1),
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1

(1 + w)2(1− w)
(x1x2 + y1y2 + (1− w − w2)x1y2 − wx2y1),

1

(1 + w)2(1− w)
((1− w − w2)x1x2 + wy1y2 + x1y2 − x2y1)}.

(b) Let w =
√
2− 1. Then S is extreme if and only if

S ∈ {x1x2, x1y2,
1√
2
(x1x2 + x1y2),

1

2
(x1x2 + y1y2 + x1y2 + x2y1),

√
2

4
((
√
2 + 1)(x1x2 + y1y2) + x1y2 − x2y1),

√
2

4
(x1x2 + y1y2 + (

√
2 + 1)(x1y2 − x2y1))}.

(c) Let w >
√
2− 1. Then S is extreme if and only if

S ∈ {x1x2, x1y2,
1

1 + w
(x1x2 + x1y2),

1

(1 + w)2
(x1x2 + y1y2 + x1y2 + x2y1),

1

1 + 2w − w2
(x1x2 + y1y2 + x1y2 − x2y1),

1

1 + w2
(
1− w

1 + w
(x1x2 + y1y2) + x1y2 − x2y1),

1

1 + w2
(x1x2 + y1y2 +

1− w

1 + w
(x1y2 − x2y1)),

1

2 + 2w
(x1x2 + y1y2 + (2 + w)x1y2 −

1

w
x2y1),

1

2 + 2w
((2 + w)x1x2 +

1

w
y1y2 + x1y2 − x2y1)}.

Proof. It consists of two cases. Suppose that S((x1, y1), (x2, y2)) = ax1x2 +
by1y2 + cx1y2 + dx2y1 ∈ extBL(

2d∗(1, w)
2) with a ≥ b ≥ 0, c ≥ |d|. Then S ∈

extBL(2d∗(1,w)2) if and only if S
′
((x1, y1), (x2, y2)) := cx1x2+dy1y2+ax1y2+bx2y1 ∈

extBL(2d∗(1,w)2). Without loss of generality we will consider S
′
instead of S.

Case 1: a = b
In this case, S

′ ∈ Ls(
2d∗(1, w)

2). Since S
′ ∈ extBL(2d∗(1,w)2), S

′ ∈ extBLs(2d∗(1,w)2).

Let S
′ ∈ extBLs(2d∗(1,w)2) in the list of Theorem 2.3.

Claim: S
′
((x1, y1), (x2, y2)) =

1
1+w2 (x1x2 + y1y2 + x1y2 + x2y1)/∈ extBL(2d∗(1,w)2)

Let ϵ > 0 such that

ϵ(1 + w2) < 1,
1− w2

1 + w2
+ 2ϵw < 1,

2w

1 + w2
+ ϵ(1− w2) < 1.
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Let R1((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2)) + ϵ(x1y2 − x2y1) and R2((x1, y1),

(x2, y2)) = S
′
((x1, y1), (x2, y2)) − ϵ(x1y2 − x2y1). By Theorem 2.2, ∥R1∥ = 1 =

∥R2∥, S
′
= 1

2 (R1 +R2). Since R1 ̸= R2, S
′
is not extreme.

Claim: S
′
((x1, y1), (x2, y2)) =

1
(1+w)2 (x1x2+y1y2+x1y2+x2y1)∈ extBL(2d∗(1,w)2)

Notice that

1 = |S
′
((1, w), (1, w))| = |S

′
((w, 1), (w, 1))|

= |S
′
((1, w), (w, 1))| = |S

′
((w, 1), (1, w))|.

Let R1((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))+ (ϵx1x2 + δy1y2 + γx1y2 + δx2y1)

and R2((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))− (ϵx1x2+ δy1y2+ γx1y2+ δx2y1)

with ∥R1∥ = 1 = ∥R2∥, ϵ, δ, γ, β ∈ R. Since

|Ri((1, w), (1, w))| ≤ 1, |Ri((w, 1), (w, 1))| ≤ 1,

|Ri((1, w), (w, 1))| ≤ 1, |Ri((w, 1), (1, w))| ≤ 1,

we have

0 = ϵ+ δw2 + γw + βw

0 = ϵw2 + δ + γw + βw

0 = ϵw + δw + γ + βw2

0 = ϵw + δw + γw2 + β,

which imply that 0 = ϵ = δ = γ = β. Therefore, R1 = S
′
= R2 and S

′
is extreme.

Claim: if w ̸=
√
2− 1, then S

′
((x1, y1), (x2, y2)) =

1
1+2w−w2 (x1x2 + y1y2 + x1y2 −

x2y1) ∈ extBL(2d∗(1,w)2)

Notice that

1 = |S
′
((1,−w), (1, w))| = |S

′
((w, 1), (w,−1))|

= |S
′
((1, w), (w, 1))| = |S

′
((w,−1), (1,−w))|.

Let R1((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))+ (ϵx1x2 + δy1y2 + γx1y2 + δx2y1)

and R2((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))− (ϵx1x2+ δy1y2+ γx1y2+ δx2y1)

with ∥R1∥ = 1 = ∥R2∥, ϵ, δ, γ, β ∈ R. Since

|Ri((1,−w), (1, w))| ≤ 1, |Ri((w, 1), (w,−1))| ≤ 1,

|Ri((1, w), (w, 1))| ≤ 1, |Ri((w,−1), (1,−w))| ≤ 1,

we have

0 = ϵ− δw2 + γw − βw

0 = ϵw2 − δ − γw + βw

0 = ϵw + δw + γ + βw2

0 = ϵw + δw − γw2 − β,
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which imply that 0 = ϵ = δ = γ = β. Therefore, R1 = S
′
= R2 and S

′
is extreme.

Claim: S
′
((x1, y1), (x2, y2)) = 1

(1+w)2(1−w) (x1x2 + y1y2 + (1 − w − w2)x1y2 −

wx2y1) ∈ extBL(2d∗(1,w)2) if w <
√
2− 1

Notice that

1 = |S
′
((1, w), (1, w))| = |S

′
((1, w), (w, 1))|

= |S
′
((w, 1), (w, 1))| = |S

′
((w, 1), (w,−1))|.

Let R1((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))+ (ϵx1x2 + δy1y2 + γx1y2 + δx2y1)

and R2((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))− (ϵx1x2+ δy1y2+ γx1y2+ δx2y1)

with ∥R1∥ = 1 = ∥R2∥, ϵ, δ, γ, β ∈ R. Since

|Ri((1, w), (1, w))| ≤ 1, |Ri((1, w), (w, 1))| ≤ 1,

|Ri((w, 1), (w, 1))| ≤ 1, |Ri((w, 1), (w,−1))| ≤ 1,

we have

0 = ϵ+ δw2 + γw + βw

0 = ϵw + δw + γ + βw2

0 = ϵw2 + δ + γw + βw

0 = ϵw2 − δ − γw + βw,

which imply that 0 = ϵ = δ = γ = β. Therefore, R1 = S
′
= R2 and S

′
is extreme.

Claim: S
′
((x1, y1), (x2, y2)) =

√
2
4 ((

√
2 + 1)(x1x2 + y1y2) + x1y2 − x2y1) ∈

extBL(2d∗(1,w)2) if w =
√
2− 1

Notice that

1 = |S
′
((1, w), (1, w))| = |S

′
((1, w), (w, 1))|

= |S
′
((1,−w), (−1, w))| = |S

′
((w, 1), (w, 1))|.

Let R1((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))+ (ϵx1x2 + δy1y2 + γx1y2 + δx2y1)

and R2((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))− (ϵx1x2+ δy1y2+ γx1y2+ δx2y1)

with ∥R1∥ = 1 = ∥R2∥, ϵ, δ, γ, β ∈ R. Since

|Ri((1, w), (1, w))| ≤ 1, |Ri((1, w), (w, 1))| ≤ 1,

|Ri((1,−w), (−1, w))| ≤ 1, |Ri((w, 1), (w, 1))| ≤ 1,

we have

0 = ϵ+ δw2 + γw + βw

0 = ϵw + δw + γ + βw2

0 = −ϵ− δw2 + γw + βw

0 = ϵw2 + δ + γw + βw,
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which imply that 0 = ϵ = δ = γ = β. Therefore, R1 = S
′
= R2 and S

′
is extreme.

Claim: S
′
((x1, y1), (x2, y2)) = 1

1+w2 (
1−w
1+w (x1x2 + y1y2) + x1y2 − x2y1) ∈

extBL(2d∗(1,w)2) if w >
√
2− 1

Notice that

1 = |S
′
((1, w), (−w, 1))| = |S

′
((1,−w), (w, 1))| = |S

′
((w, 1), (−1, w))|

= |S
′
((w,−1), (1, w))| = |S

′
((1,−w), (1, w))|.

Let R1((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))+ (ϵx1x2 + δy1y2 + γx1y2 + δx2y1)

and R2((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))− (ϵx1x2+ δy1y2+ γx1y2+ δx2y1)

with ∥R1∥ = 1 = ∥R2∥, ϵ, δ, γ, β ∈ R. Since

|Ri((1, w), (−w, 1))| ≤ 1, |Ri((1,−w), (w, 1))| ≤ 1,

|Ri((w, 1), (−1, w))| ≤ 1, |Ri((w,−1), (1, w))| ≤ 1,

|Ri((1,−w), (1, w))| ≤ 1,

we have

0 = −ϵw + δw + γ − βw2

0 = ϵw − δw + γ − βw2

0 = −ϵw + δw + γw2 − β

0 = ϵw − δw + γw2 − β

0 = ϵ− δw2 + γw − βw

which imply that 0 = ϵ = δ = γ = β. Therefore, R1 = S
′
= R2 and S

′
is extreme.

Claim: S
′
((x1, y1), (x2, y2)) = 1

2+2w ((x1x2 + y1y2) + (2 + w)x1y2 − 1
wx2y1) ∈

extBL(2d∗(1,w)2) if w >
√
2− 1

Notice that

1 = |S
′
((1,−w), (1, w))| = |S

′
((1, w), (w, 1))|

= |S
′
((1, w), (−w, 1))| = |S

′
((w, 1), (−w, 1))|.

Let R1((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))+ (ϵx1x2 + δy1y2 + γx1y2 + δx2y1)

and R2((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))− (ϵx1x2+ δy1y2+ γx1y2+ δx2y1)

with ∥R1∥ = 1 = ∥R2∥, ϵ, δ, γ, β ∈ R. Since

|Ri((1,−w), (1, w))| ≤ 1, |Ri((1, w), (w, 1))| ≤ 1,

|Ri((1, w), (−w, 1))| ≤ 1, |Ri((w, 1), (−w, 1))| ≤ 1,
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we have

0 = ϵ− δw2 + γw − βw

0 = ϵw + δw + γ + βw2

0 = −ϵw + δw + γ − βw2

0 = −ϵw2 + δ + γw − βw,

which imply that 0 = ϵ = δ = γ = β. Therefore, R1 = S
′
= R2 and S

′
is extreme.

Claim: S
′
((x1, y1), (x2, y2)) =

1
1+w2 (w(x1x2+y1y2)+x1y2−x2y1) ∈ extBL(2d∗(1,w)2)

if w <
√
2− 1

Notice that

1 = |S
′
((1,−w), (w, 1))| = |S

′
((w, 1), (1,−w))|

= |S
′
((w,−1), (1, w))| = |S

′
((w,−1), (1,−w))|.

Let R1((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))+ (ϵx1x2 + δy1y2 + γx1y2 + δx2y1)

and R2((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))− (ϵx1x2+ δy1y2+ γx1y2+ δx2y1)

with ∥R1∥ = 1 = ∥R2∥, ϵ, δ, γ, β ∈ R. Since

|Ri((1,−w), (w, 1))| ≤ 1, |Ri((w, 1), (1,−w))| ≤ 1,

|Ri((w,−1), (1, w))| ≤ 1, |Ri((w,−1), (1,−w))| ≤ 1,

we have

0 = ϵw − δw + γ − βw2

0 = ϵw − δw − γw2 + β

0 = ϵw − δw + γw2 − β

0 = ϵw + δw − γw2 − β,

which imply that 0 = ϵ = δ = γ = β. Therefore, R1 = S
′
= R2 and S

′
is extreme.

Case 2: a > b

We claim that b = 0. Otherwise. By Theorem 2.2, 0 < a < 1. If d = 0, then

1 = ∥S
′
∥ = a+ bw2 + cw = (a+ b)w + c,

a− bw2 + cw < 1, (a− b)w + c < 1.

If c > 0, then we can find ϵ > 0 such that ∥Rj∥ = 1 for j = 1, 2, where

R1((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))+ ϵ(x1x2 − 1

wy1y2 +x1y2 − 1
wx2y1)

and R2((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))−ϵ(x1x2− 1

wy1y2+x1y2− 1
wx2y1),
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which shows that S
′
is not extreme and we have a contradiction. If c = 0, then

a = 1
1+w < 1

w(1+w) = b, which is impossible. Therefore, d ̸= 0. If d > 0, then

1 = ∥S
′
∥ = a+ bw2 + (c+ d)w = (a+ b)w + c+ dw2,

a− bw2 + (c− d)w < 1, (a− b)w + c− dw2 < 1,

which shows that S
′
is not extreme and we have a contradiction. If d < 0, then

a > b > 0, c ≥ |d| = −d. Since S
′
is extreme, it follows that

1 = a+bw2+(c+d)w = a−bw2+(c−d)w = (a+b)w+c+dw2 = (a−b)w+c−dw2.

Then a = c = 1
1+w , 0 = b = d, which is a contradiction. We have shown that b = 0.

If a = 1, then 0 = c = d. Hence S
′
((x1, y1), (x2, y2)) = x1x2.

Claim: x1x2 ∈ extBL(2d∗(1,w)2)

Notice that

1 = |S
′
((1, w), (1, w))| = |S

′
((1, w), (1,−w))|

= |S
′
((1,−w), (1, w))| = |S

′
((1,−w), (1,−w))|.

Let R1((x1, y1), (x2, y2)) = x1x2+(ϵx1x2+δy1y2+γx1y2+δx2y1) and R2((x1, y1),
(x2, y2)) = x1x2−(ϵx1x2+δy1y2+γx1y2+δx2y1) with ∥R1∥ = 1 = ∥R2∥, ϵ, δ, γ, β ∈
R. Since

|Ri((1, w), (1, w))| ≤ 1, |Ri((1, w), (1,−w))| ≤ 1,

|Ri((1,−w), (1, w))| ≤ 1, |Ri((1,−w), (1,−w))| ≤ 1,

we have

0 = ϵ+ δw2 + γw + βw

0 = ϵ− δw2 − γw + βw

0 = ϵ− δw2 + γw − βw

0 = ϵ+ δw2 − γw − βw,

which imply that 0 = ϵ = δ = γ = β. Therefore, R1 = x1x2 = R2 and x1x2 is
extreme.

Suppose that 0 < a < 1, d ̸= 0. If d > 0, then

1 = ∥S
′
∥ = a+ (c+ d)w = aw + c+ dw2,

a+ (c− d)w < 1, aw + c− dw2 < 1.

Notice that if c > |d| = d, then S
′
is not extreme and we have a contradiction.

If c = d, then S
′
((x1, y1), (x2, y2)) = 1−w

1+wx1x2 + 1
1+wx1y2 + 1

1+wx2y1. It is not

difficult to show that S
′
is not extreme and we have a contradiction.
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Similarly, if d < 0, then

1 = ∥S
′
∥ = a+ (c− d)w = aw + c− dw2,

a+ (c+ d)w < 1, aw + c+ dw2 < 1.

Notice that if c > |d| = −d, then S
′
is not extreme and we have a contradiction.

If c = −d, then S
′
((x1, y1), (x2, y2)) =

1−w
1+wx1x2 +

1
1+wx1y2 − 1

1+wx2y1. It is not

difficult to show that S
′
is not extreme and we have a contradiction. Therefore,

d = 0 and 1 = a + cw = aw + c, so a = c = 1
1+w , so S

′
((x1, y1), (x2, y2)) =

1
1+w (x1x2 + x1y2). We will show that S

′
is extreme. Indeed,

1 = |S
′
((1, w), (1, w))| = |S

′
((1,−w), (1, w))|

= |S
′
((1, w), (w, 1))| = |S

′
((1,−w), (w, 1))|.

Let R1((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2))+ (ϵx1x2 + δy1y2 + γx1y2 + δx2y1)

and R2((x1, y1), (x2, y2)) = S
′
((x1, y1), (x2, y2)) − (ϵx1x2 + δy1y2 + γx1y2 +

δx2y1)with ∥R1∥ = 1 = ∥R2∥, ϵ, δ, γ, β ∈ R. Since

|Ri((1, w), (1, w))| ≤ 1, |Ri((1,−w), (1, w))| ≤ 1,

|Ri((1, w), (w, 1))| ≤ 1, |Ri((1,−w), (w, 1))| ≤ 1,

we have

0 = ϵ+ δw2 + γw + βw

0 = ϵ− δw2 + γw − βw

0 = ϵw + δw + γ + βw2

0 = ϵw − δw + γ − βw2,

which imply that 0 = ϵ = δ = γ = β. Hence, R1 = S
′
= R2 and S

′
is extreme.

Therefore, we complete the proof.

Using Theorems 2.1 and 2.4, we can classify the extreme bilinear forms of the
unit ball of L(2d∗(1, w)

2) as follows:

Theorem 2.5. T ∈ extBL(2d∗(1,w)2) if and only if there exist n ∈ N and
S((x1, y1), (x2, y2)) = ax1x2 + by1y2 + cx1y2 + dx2y1 ∈ extBL(2d∗(1,w)2) with

a ≥ |b|, c ≥ |d| such that T ((x1, y1), (x2, y2)) := S((u
(n)
1 , v

(n)
1 ), (u

(n)
2 , v

(n)
2 )) ◦ · · · ◦

((u
(1)
1 , v

(1)
1 ), (u

(1)
2 , v

(1)
2 )), where

for j = 1, . . . , n, ((u
(j)
1 , v

(j)
1 ), (u

(j)
2 , v

(j)
2 )) ∈ {((±x1,±y1), (±x2,±y2)),

((±x2,±y2), (±x1,±y1)), ((±x1,±y1), (±y2,±x2)), ((±y2,±x2),

(±x1,±y1)), ((±y1,±x1), (±x2,±y2)), ((±x2,±y2), (±y1,±x1)),

((±y2,±x2), (±y1,±x1)), ((±y1,±x1), (±y2,±x2))}.
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Proof. It follows from Theorems 2.1 and 2.4.

Corollary 2.6. (a) extBLs(2d∗(1,w)2)\extBL(2d∗(1,w)2) ̸= ∅.
(b) extBL(2d∗(1,w)2)\extBLs(2d∗(1,w)2) ̸= ∅.

Proof. (a): By Theorems 2.3, 2.4 and 2.5,

1

1 + w2
(x1x2 + y1y2) ∈ extBLs(2d∗(1,w)2)\extBL(2d∗(1,w)2).

(b): By Theorems 2.3, 2.4 and 2.5,

x1y2 ∈ extBL(2d∗(1,w)2)\extBLs(2d∗(1,w)2).
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