• Title/Summary/Keyword: $O_2$ Flow Rate

Search Result 1,084, Processing Time 0.034 seconds

Simultaneous HPLC Determination of Marker Compounds for the Standardization of Hedyotis diffusa (백운풀의 지표성분 설정 및 품질표준화를 위한 정량 분석법)

  • Bang, Han-Yeol;Yang, Eun-Ju;Kim, Jeong-Ah;Song, Kyung-Sik
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1025-1031
    • /
    • 2013
  • From a 95% ethanolic extract of H. diffusa, four marker compounds (HD1~HD4) were isolated, which were relatively unique and exist in comparably high contents. The structures of marker compounds were identified as digitolutein (1), 2-hydroxy-3-methylanthraquinone (2), (E/Z)-6-O-p-coumaroyl scandoside methyl ester (4:1 mixture) (3), and (E/Z)-6-O-p-methoxycinnamoyl scandoside methyl ester (4:1 mixture) (4), respectively, on the basis of $^{13}C$ and $^1H$-NMR analyses. The calibration curves of marker compounds showed high linearity, as their correlation coefficient ($R^2$) were in the range of 0.9991~0.9999. In addition, the limit of detection (LOD) and the limit of quantification (LOQ) were $0.03{\sim}0.07{\mu}g/ml$ and $0.099{\sim}0.231{\mu}g/ml$, respectively. The intra-day/inter-day precision and accuracy were 0.23~2.00%/0.25~1.16% and 94.60~108.44%/94.73-110.23%, respectively. The optimal HPLC conditions for the simultaneous quantification of HD1~HD4 were as follows: stationary phase; Merck Chromolith RP-18e ($100{\times}4.6mm$, $5{\mu}m$), column temp.; room temperature, UV detection at 280 nm, flow rate; 2.0 ml/min, injection volume; $10{\mu}l$, mobile phase; start with the mixture of 80% solvent A ($H_2O$ containing 0.5% acetic acid) and 20% solvent B (methanol containing 0.5% acetic acid) and gradually decrease solvent A to 40% in 9 min., then retain this condition to 18 min. Under the HPLC condition, the four marker compounds 1~4 were successfully separated without any interference of other constituents. The results obtained in this study are expected to be helpful for the development of nutraceutics and natural medicines and for the quality control of this plant.

Effects of Ambient Particulate Matter($PM_{10}$) on Peak Expiratory Flow and Respiratory Symptoms in Subjects with Bronchial Asthma During Yellow Sand Period (황사기간 중 천식 환자에서 대기 중 미세먼지($PM_{10}$)가 최대호기 유속과 호흡기 증상에 미치는 영향)

  • Park, Jeong Woong;Lim, Young Hee;Kyung, Ssun Young;An, Chang Hyeok;Lee, Sang Pyo;Jeong, Seong Hwan;Ju, Young-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.6
    • /
    • pp.570-578
    • /
    • 2003
  • Background : Ambient particles during Asian dust events are usually sized less than $10{\mu}m$, known to be associated with the adverse effects on the general populations. But, there has been no considerable evidence linking these particles to the adverse effects on airways. The objectives of this study was to investigate the possible adverse effects of Asian dust events on respiratory function and symptoms in subjects with bronchial asthma. Patients and Methods : From march to June 2002, Asthmatic patients who were diagnosed with bronchial challenge test or bronchodilator response were enrolled. We divided them into three groups; mild, moderate, and severe, according to the severity. Subjects with other organ insufficiency such as heart, kidney, liver, and malignancy were excluded. All patients completed twice daily diaries and recorded peak flow rate, respiratory symptom, and daily activity. Daily and hourly mean pollutant levels of particulate matter < $10{\mu}m$ in diameter($PM_{10}$), nitrogen dioxide($NO_2$), sulphur dioxide($SO_2$), ozone($O_3$) and carbon monoxide(CO) were measured at the 10 different monitoring sites. Results : Dust events occured 14 times during the study period. Daily averages of 4 air pollutant were measured with an increased level of $PM_{10}$, decreased level of $NO_2$ and $SO_2$, and no change in CO during dust days compared to those during control days. An increase in $PM_{10}$ concentration was associated with an increase of subjects with PEF variability of >20% (p<0.05), night time symptom(p<0.05), and a decrease in mean PEF (p<0.05), which were calculated by the longitudinal data analysis. Otherwise, there was no association between $PM_{10}$ level and bronchodialtor inhaler, and daytime respiratory symptoms. Conclusion : This study shows evidence that ambient air pollution, especially $PM_{10}$, during Asian dust events, could be one of the many aggravating factors at least in patients with airway diseases. This data can be used as a primary source to set up a new policy on air environmental control and to evaluate the safety of air pollution index. We also expect that this research will help identify precise components of dust, which are more linked to the adverse effects.

Effects of Various Proteins on the Autoxidation of L-Ascorbic Acid (비타민 C 산화반응에 대한 단백질의 공존효과)

  • Kim Mi-Ok;Jang Sang-Moon
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.294-301
    • /
    • 2004
  • Effects of superoxide dismutase(SOD), catalase(CAT), and such other proteins as bovine serum albumin(BSA), ovalbumin, lysozyme, and v-globulin on the autoxidation rates of L-ascorbic acid(AsA) in the absence of heavy metal ions and in the presence of Fe(III) or Cu(II) ions in water were examined. AsA was dissolved in a ultra-refined water at a concentration of 50 ${\mu}$M and 5 ${\mu}$M Fe(III) or 0.1 ${\mu}$M Cu(II) were added, and a oxygen gas was bubbled through the solution at a flow rate of 200 ml/min at 35$^{\circ}C$. The amount of remaining AsA in the reaction mixture was determined by using a UV spectrophotometer(at 265 nm). It was found that the Cu(II) at a concentration of 0.1 ${\mu}$M had a more accelerated for the autoxidation of AsA than Fe(III) at 5 ${\mu}$M. Moreover, it was confirmed that the ratio of remaining AsA was significantly larger in the presence of SOD, CAT, BSA, ovalbumin, lysozyme, and v-globulin than in the absence of proteins. The stabilization of AsA by various proteins were confirmed during the autoxidation of AsA in the presence of Fe(III) or Cu(II) in water. It was suggested that the non-enzymatic effects of SOD, CAT and some other proteins might be involves in the stabilization of AsA.

Effects of Water Temperature and Salinity on the Oxygen Consumption Rate of Juvenile Spotted Sea Bass, Lateolabrax maculatus (점농어, Lateolabrax maculatus 치어의 산소 소비율에 미치는 수온과 염분의 영향)

  • Oh, Sung-Yong;Shin, Chang Hoon;Jo, Jae-Yoon;Noh, Choong Hwan;Myoung, Jung-Goo;Kim, Jong-Man
    • Korean Journal of Ichthyology
    • /
    • v.18 no.3
    • /
    • pp.202-208
    • /
    • 2006
  • An experiment was conducted to investigate the effects of three water temperatures (15, 20 and $25^{\circ}C$) in combination with three salinities (0, 15 and 30 psu) on the oxygen consumption rate of juvenile spotted sea bass, Lateolabrax maculatus (mean body weight $5.5{\pm}0.3g$). The oxygen consumption rates of L. maculatus were measured in triplicate for 24 hours using a continuous flow-through respirometer. Water temperature resulted in significant differences in the mean oxygen consumption rate of L. maculatus (p<0.001), but salinity and combinations of salinity and water temperature did not have (p>0.05). The oxygen consumption increased with increasing water temperatures in all experimental salinity regimes (p<001). Mean oxygen consumption rates at 15, 20 and $25^{\circ}C$ ranged 328.8~342.3, 433.9~441.0 and 651.5~659.9 mg $O_2\;kg^{-1}\;h^{-1}$, respectively. $Q_{10}$ values did not vary with salinity, bud varied with water temperature. $Q_{10}$ values ranged 1.63~1.75 between 15 and $20^{\circ}C$, 2.24~2.26 between 20 and $25^{\circ}C$, and 1.92~1.98 over the full temperature range. The energy loss by metabolic cost increased with increasing water temperatures in all experimental salinity regimes (p<0.001) Mean energy loss rates at 15, 20 and $25^{\circ}C$ ranged 224.6~233.8, 296.3~301.2 and $444.9{\sim}450.7kJ\;kg^{-1}\;d^{-1}$, respectively. These data suggest that the culture of juvenile spotted sea bass is possible without energy loss by salinity difference in freshwater as well as seawater after salinity acclimation. Thus, this result has an application for culture management and bioenergetic model for growth of this species.

Determination of saikosaponin derivatives in Bupleuri Radix using HPLC-ELSD (HPLC-ELSD를 이용한 시호 중의 saikosaponin 유도체의 확인법 개발)

  • Kim, Bo-Mi;Yoon, Kee-Dong;Han, Kyung-Reem;Kim, Jin-Woong
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.57-61
    • /
    • 2008
  • A HPLC-ELSD method was developed to determine saikosaponin derivatives from Bupleuri Radix. Eight saikosaponins, saikosaponin c, i, h, a, $b_2$, g, $b_1$ and d, were analyzed under optimized HPLC conditions [column: Eclipse XDB $C_{18}$ ($150{\times}4.6mm$ i.d., $5{\mu}m$; mobile phase: $H_2O$ with 0.1% $CH_3$COOH (v/v) for solvent A and AcCN with 0.1% $CH_3$COOH (v/v) for solvent B, gradient elution; flow rate: 1mL/min; injection volume: $20{\mu}L$]. Good linearity was achieved in the range from 62.5 to $250{\mu}g/mL$ for each compound, and intra-day precision and accuracy at each concentration level varied between 0.05 and 5.45% and between 93.9 and 109.6%, respectively, whereas those for inter-day variations were between 0.91 to 2.73% and 94.3 to 106.1%. This HPLC-ELSD method was applied for the determination of sakosaponins from Bupleuri Radix samples, and saikosaponin a $(0.79{\pm}0.20mg/g)$, c $(0.33{\pm}0.06mg/g)$ and d $(0.48{\pm}0.15mg/g)$ were observed as major compounds. The other saikosaponins were shown under limit of quantification level thus couldn't be quantified. The present study suggested that the introduced HPLC-ELSD method is selective and reliable, and not only saikosaponin a, but also saikosaponin c and d should be employed as the standard markers for Bupleuri Radix.

Determination of Ginseng Saponins by Reversed-Phase High Performance Liquid Chromatography (역상 고속 액체크로마토그래피를 이용한 인삼 사포닌의 분석)

  • Jeong, Seung-Il;Kim, Choen-Suk;Lee, No-Woon;Choi, Kang-Ju;Lee, Yong-Gu;Kim, Il-Kwang
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.436-439
    • /
    • 1998
  • Ginseng saponins were analysed using reversed-phase high performance liquid chromatography with several columns. The optimum conditions were as following : reverse phase column; Novapak $C_{18}$ ODS column ($3.9mm{\times}150mm$, $5{\mu}m$), acetonitrile/water binary mobile phase gradient controller system, solvent flow rate; 1.5 mL/min, and UV (203 nm) detector. The complete separation of ginsenoside $Rb_1$, $Rb_2$, Rc, Rd, Re, Rf and $Rg_1$ was achieved within 50 min. The regression coefficients of the calibration curves for seven ginsenosides were 0.98~0.99.

  • PDF

Simultaneous Analysis of Bioactive Metabolites from Lonicera japonica Flower Buds by HPLC-DAD-MS/MS (HPLC-DAD-MS/MS를 이용한 금은화 생리활성 물질의 동시분석)

  • Ryu, Sung-Kwang;Jeon, Ju-Eun;Kang, Gyoung-Won;Kang, Sam-Sik;Shin, Jong-Heon
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.446-451
    • /
    • 2008
  • A high-performance liquid chromatography (HPLC) with diode array detector (DAD) and electrospray ionization mass spectrometry (ESI-MS) was established for the simultaneous determination of chlorogenic acid (1), sweroside (2), luteolin-7-O-glucoside (3), (E)-aldosecologanin (4) and 3,5-dicaffeoylquinic acid (5) from Lonicera joponica flower buds. The optimal chromatographic conditions were obtained on an ODS column (5 ${\mu}m$, 4.6${\times}$150 mm) with the column temperature $25^{\circ}C$. The mobile phase was composed of (A) water with 0.1% formic acid and (B) acetonitrile with 0.1% formic acid using a gradient elution, the flow rate was 0.3 ml/min. Detection wavelength was set at 250 nm. All calibration curves showed good linear regression ($r^2$>0.994) within test ranges. The developed method provided satisfactory precision and accuracy with overall intra-day and inter-day variations of 0.05${\sim}$1.95% and 0.15${\sim}$2.26%, respectively, and the overall recoveries of 97.71${\sim}$103.65% for the five compounds analyzed. The verified method was successfully applied to quantitative determination of the three types (phenolic compounds, iridoids and flavonoids) of bioactive compounds in 21 commercial L. japonica flower buds samples from different markets in Korea and China. The analytical results demonstrated that the contents of the five analytes vary significantly with sources.

Effects of Water Temperature and Photoperiod on the Oxygen Consumption Rate of Juvenile Dark-banded Rockfish, Sebastes inermis (수온과 광주기에 따른 볼락, Sebastes inermis 치어의 산소 소비율)

  • Oh Sung-Yong;Noh Choong-Hwan
    • Journal of Aquaculture
    • /
    • v.19 no.3
    • /
    • pp.210-215
    • /
    • 2006
  • An experiment was conducted to investigate the effects of four water temperatures (10, 15, 20, and $25^{\circ}C$) in combination with three photoperiods (24L:0D, 12L: 12D, and OL:24D) on the oxygen consumption rate of juvenile dark-banded rockfish, Sebastes inermis (mean body weight $20.5{\pm}0.7g$). The oxygen consumption rates of S. inermis were measured in triplicate for 24 hours using a continuous flow-through respirometer. Different combinations of water temperatures and photoperiods resulted in significant differences in the mean oxygen consumption rate of S. inermis (P<0.001). The oxygen consumption increased with increasing water temperatures for all photoperiod treatments (P<0.01). Mean oxygen consumption rates at 10, 15,20 and $25^{\circ}C$ ranged $178.3\sim283.5,\;386.7\sim530.7,\;529.2\sim754.3$ and $590.0\sim785.5mg\;O_2kg^{-1}h^{-1}$, respectively. $Q_{10}$ values ranged $3.17\sim5.51$ between 10 and $15^{\circ}C,\;1.87\sim2.10$ between 15 and $20^{\circ}C$ and $1.08\siml.24$ between 20 and $25^{\circ}C$, respectively. Fish held in continuous darkness (OL:24D) used consistently less okygen than fish exposed to continuous light (P<0.05). The mean oxygen consumption offish in a 12L:12D photoperiod was higher than that offish in 24L:0D and 0L:24D photoperiods under all temperature treatments except $10^{\circ}C$. The oxygen consumption of fish exposed to the 12L:12D photoperiod was significantly higher during the light phase than during the dark phase under all temperature treatments except $10^{\circ}C\;(P<0.05)$. This study provides empirical data for estimating oxygen consumption of S. inermis under given condition. This result has application for culture management and bioenergetic model for growth of this species.

Comparison of Respiratory Mechanics and Gas Exchange Between Pressure-controlled and Volume-controlled Ventilation (압력조절환기법과 용적조절환기법의 호흡역학 몇 가스교환의 비교)

  • Jeong, Seong-Han;Choi, Won-Jun;Lee, Jung-A;Kim, Jin-A;Lee, Mun-Woo;Shin, Hyoung-Shik;Kim, Mi-Kyeong;Choe, Kang-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.5
    • /
    • pp.662-673
    • /
    • 1999
  • Background : Pressure-controlled ventilation (PCV) is frequently used recently as the initial mode of mechanical ventilation in the patients with respiratory failure. Theoretically, because of its high initial inspiratory flow, pressure-controlled ventilation has lower peak inspiratory pressure and improved gas exchange than volume-controlled ventilation (VCV). But the data from previous studies showed controversial results about the gas exchange. Moreover, the comparison study between PCV and VCV with various inspiration : expiration time ratios (I : E ratios) is rare. So this study was performed to compare the respiratory mechanics and gas exchange between PCV and VCV with various I : E raitos. Methods : Nine patients receiving mechanical ventilation for respiratory failure were enrolled. They were ventilated by both PCV and VCV with various I : E ratios (1 : 2, 1 : 1.3 and 1.7 : 1). $FiO_2$, tidal volume, respiratory rate and external positive end-expiratory pressure (PEEP) were kept constant throughout the study. After 20 minutes of each ventilation mode, arterial blood gas, airway pressures, expired $CO_2$ were measured. Results : In both PCV and VCV, as the I : E ratio increased, the mean airway pressure was increased, and $PaCO_2$ and physiologic dead space fraction were decreased. But P(A-a)$O_2$ was not changed. In all three different I : E ratios, peak inspiratory pressure was lower during PCV, and mean airway pressure was higher during PCV. But $PaCO_2$ level, physiologic dead space fraction and P(A-a)$O_2$ were not different between PCV and VCV with three different I : E ratios. Conclusion : There was no difference in gas exchange between PCV and VCV under the same tidal volume, frequency and I : E ratio.

  • PDF

Effects of Water Temperature and Photoperiod on the Oxygen Consumption Rate of Fasted Juvenile Parrot Fish, Oplegnathus fasciatus (돌돔, Oplegnathus fasciatus 치어의 절식시 산소 소비율에 미치는 수온과 광주기의 영향)

  • Oh, Sung-Yong;Noh, Choong-Hwan;Kang, Rae-Seon;Myoung, Jung-Goo
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.407-413
    • /
    • 2006
  • The effect of water temperature and photoperiod on the oxygen consumption of the fasted juvenile parrot fish, Oplegnathus fasciatus was investigated to provide empirical data for the early-stage culture management and bioenergetic growth model of the species. The mean body weight of the juvenile used for the experiment was $21.5{\pm}1.9g$, and the oxygen consumption rate was measured under four water temperatures (10, 15, 20 and $25^{\circ}C$) and three photoperiods (24L:0D, 12L:12D and OL:24D) with an interval of 5 minutes for 24 hours using a continuous flow-through respirometer. In each treatment three replicates were set up and 15 juveniles were totally involved. The oxygen consumption rates increased with increasing water temperature under all photoperiod treatments (P<0.001). Mean oxygen consumption rates at 10, 15, 20 and $25^{\circ}C$ ranged $202.1{\sim}403.4,\;306.7{\sim}502.2,\;536.7{\sim}791.0\;and\;879.9{\sim}1,077.4mg\;O_2\;kg^{-1}h^{-1}$, respectively. $Q_{10}$ values ranged $1.58{\sim}2.30$ between 10 and $15^{\circ}C,\;2.44{\sim}3.06$ between 15 and $20^{\circ}C\;and\;1.86{\sim}2.6y9$ between 20 and $25^{\circ}C$, respectively. Mean oxygen consumption rates of O. fasciatus were the highest in continuous light (24L:0D) followed by 12L:12D and 0L:24D (P<0.001). The oxygen consumption of fish exposed to the 12L:12D photoperiod was significantly higher during the light phase than during the dark phase under all temperature treatments (P<0.001). In summary, oxygen consumption rates of the juvenile parrot fish increase with increasing water temperature and lengthening daylight period; and, thereby, changes in water quality resulted from the depletion of oxygen under high temperature and long daylight photoperiod conditions should be monitored.