Effects of Various Proteins on the Autoxidation of L-Ascorbic Acid

비타민 C 산화반응에 대한 단백질의 공존효과

  • 김미옥 (대구보건대학 보건다이어트과) ;
  • 장상문 (대구보건대학 호텔조리음료계열)
  • Published : 2004.09.01

Abstract

Effects of superoxide dismutase(SOD), catalase(CAT), and such other proteins as bovine serum albumin(BSA), ovalbumin, lysozyme, and v-globulin on the autoxidation rates of L-ascorbic acid(AsA) in the absence of heavy metal ions and in the presence of Fe(III) or Cu(II) ions in water were examined. AsA was dissolved in a ultra-refined water at a concentration of 50 ${\mu}$M and 5 ${\mu}$M Fe(III) or 0.1 ${\mu}$M Cu(II) were added, and a oxygen gas was bubbled through the solution at a flow rate of 200 ml/min at 35$^{\circ}C$. The amount of remaining AsA in the reaction mixture was determined by using a UV spectrophotometer(at 265 nm). It was found that the Cu(II) at a concentration of 0.1 ${\mu}$M had a more accelerated for the autoxidation of AsA than Fe(III) at 5 ${\mu}$M. Moreover, it was confirmed that the ratio of remaining AsA was significantly larger in the presence of SOD, CAT, BSA, ovalbumin, lysozyme, and v-globulin than in the absence of proteins. The stabilization of AsA by various proteins were confirmed during the autoxidation of AsA in the presence of Fe(III) or Cu(II) in water. It was suggested that the non-enzymatic effects of SOD, CAT and some other proteins might be involves in the stabilization of AsA.

AsA 수용액 중에서 중금속이온 비존재, Fe(III)이온 존재, 그리고 Cu(II)이온 존재 하에서의 AsA 자동산화반응에 대한 단백질 공존 효과에 대하여 살펴보았다. 수용액 중에서의 AsA 산화반응은 중금속 이온이 존재 하지 않는 경우보다 Fe(III)이온 및 Cu(II)이온이 존재하는 경우에 AsA 잔존율이 낮은 것으로 나타났다. 또한 5 $\mu$M Fe(III)이온 보다 약 50배 낮은 농도인 0.1 $\mu$M Cu(II)이온이 존재하는 경우가 AsA 산화반응 정도가 더욱 큰 것을 알 수 있었다. 이러한 AsA자동산화 반응에 대해 효소 단백질로서는 SOD 및 CAT, 비효소 단백질로서는 BSA, ovalbumin, v-globulin, lysozyme를 이용하여 AsA산화반응에 미치는 영향을 조사하였다. AsA 수용액에 CAT 및 SOD가 존재하는 경우는 Fe (III)이온 및 Cu(II)이온 존재 하에서도 존재하지 않는 경우와 마찬가지로 AsA 산화반응이 억제되는 것을 알수 있었다. 이는 SOD가Ash의 산화반응에서 생긴 $O_2$를 제거하고, CAT가 $O_2$의 불균화반응에 의해서 생기는 $H_2O$$_2$를 제거하는 것 등을 생각할 수 있다. 더욱이, AsA산화반응에 있어서의 CAT혹은 실활 CAT의 존재 하에서도 AsA의 안정화작용이 나타나 Fe(III)이온 및 Cu(II)이온 존재 하에서도 AsA의 산화반응에 대한 CAT의 비특이적인 억제효과를 확인할 수 있었다. 또한, AsA의 산화분해에 미치는 $H_2O$$_2$ 영향을 살펴 보기 위하여 50 $\mu$M AsA 수용액에 50 $\mu$M $H_2O$$_2$를 첨가 하여 산소가스는 통기하지 않고 산화반응을 행한 결과, $H_2O$$_2$존재의 유무에 관계없이 Ash분해속도는 크고 이들 반응은 CAT존재에 의해 현저하게 억제되는 것을 밝혔다. 그리고, 비효소 단백질로서 BSA, oval-bumin, v-globulin, lysozyme를 이용하여 AsA 산화반응을 살펴본 결과 이들 단백질의 공존과 더불어 AsA의 산화율이 낮아지는 경향을 나타내어 AsA에 대한 비특이적인 쾌 강한 안정화작용이 관여하고 있을 것으로 시사되었다. 본 연구는 식품ㆍ생체계에 있어서 AsA의 항산화기전, 특히 중금속이온이 존재하는 경우에 있어서 항산화반응 기전을 해명하기 위한 일부분으로서 AsA대사와 단백질 대사와의 반응에 도움을 주는 중요한 기초자료를 얻을 수가 있었다.

Keywords

References

  1. Khan, MMT and Martell, AE. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. J. Am. Chem. Soc. 89:4176-4185. 1967 https://doi.org/10.1021/ja00992a036
  2. Buettner, GR. Ascorbate autoxidation in the presence of iron and copper chelates. Free Rad. Res. Comms. 1:349-353, 1986 https://doi.org/10.3109/10715768609051638
  3. Kim, M. Effects of Fe(III) and Cu(II) ions on the autoxidation of L-ascorbic acid. J. Food Sci. Nutr. 6:83-86. 2001
  4. Fleming, JE and Bensch, KG. Effect of amino acids, peptides and related compounds on the autoxidation of ascorbic acid. Int. J. Peptide Protein Res. 22:355-36. 1983 https://doi.org/10.1111/j.1399-3011.1983.tb02102.x
  5. Kalus, WH and Filby, WG. Stopped flow ESR study of the action of carbohydrates on ascorbic acid oxidation in aqueous solution, Internal. J. Vit. Nutr. Res. 55:85-89. 1985
  6. Levine, M and Morita, K. Ascorbic acid endocrine systems. Vitamins and Honnones 42:1-64, 1985 https://doi.org/10.1016/S0083-6729(08)60060-6
  7. Miller, DM, Buettner, GR and Aust, SD. Transition metals as catalysts of ::Autoxidation:: reactions. Free Radical Biol. Med. 8:95-108. 1990 https://doi.org/10.1016/0891-5849(90)90148-C
  8. Bielski, BH. Chemistry of ascorbic acid radicals, In: Ascorbic Acid: Chemistry, Metabolism, and Uses., pp.81-100. ACS Advances in Chemistiy Series No. 200, eds. Seib, PA and Tolbert, BM. American Chemical Society, Washington. DC. 1982
  9. Martell, AE. Chelates of Ascorbic acid: Formationand catalytic properties, In: Ascorbic Acid: Chemistry, Metabolism, and Uses., pp.153-178. ACSAdvances m Chemishy Series No. 200, eds. Seib, PA and Tolbert, BM. American Chemical Society, Washington. DC. 1982
  10. Scarpa, M, Stevanato, R, Viglino, P and Rigo, A. Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen. J. Biol. Chem. 258:6695-6697. 1983
  11. Miyake, N, Kim, M and Kurata, T. Formation mechanism of monodehydro-L-ascorbic acid and superoxide anion in the autoxidation of L-ascorbic acid. Biosci. Biotech. Biochem. 61:1693-1695.1997 https://doi.org/10.1271/bbb.61.1693
  12. Miyake, N, Kim, M and Kurata, T. Stabilization of L-ascorbic acid by superoxide dismutase and catalase. Biosci. Biotechnol. Biochem. 63:54-57. 1999 https://doi.org/10.1271/bbb.63.54
  13. Kim, M. Formation of Superoxide anion in the autoxidation of L-ascorbic acid in the presence of heavy metal ions. Korean J. Food Sci. TechnoI 33: 378-383. 2001
  14. Gatellier, P, Anton, M and Renerre, M. Lipid peroxidation induced by $H_{2}O_2$-activated metmyoglobin and detection of a myoglobin-derived radical. J. Agric. Food Chem. 43: 651-656. 1995 https://doi.org/10.1021/jf00051a018
  15. Weissberger, AE, Luvalle, JE and Thomas, J. Oxidation processes. XVI. The autoxidation of ascorbic acid. J. Am. Chem. Soc. 65:1934-1939. 1943 https://doi.org/10.1021/ja01250a038
  16. Weissberger, AE and Luvalle, JE. Oxidation processes. XVII. The autoxidation of ascorbic acid in the presence of copper. J. Am. Chem. Soc. 66: 700-705. 1944 https://doi.org/10.1021/ja01233a011
  17. Scaife, JF. The catalysis of ascorbic acid oxidation by copper and its complexes with amino acids, Peptides and proteins. Can. J. Biochem. Phys. 37. 1049-1067. 1959 https://doi.org/10.1139/o59-113
  18. Buettner, GR- hi the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J. Biochem. Biophys. Meth. 16:27-40. 1988 https://doi.org/10.1016/0165-022X(88)90100-5
  19. Buettner, GR. Ascorbate oxidation : UV absorbance of ascorbate and ESR spectroscopy of the ascorbyl radical as assays for iron. Free Rad. Res. Comms. 10:5-9. 1990 https://doi.org/10.3109/10715769009145927
  20. Burkitt, MJ and Gilbert, BC. Model studies of the iron-catalysed Haber-Weiss cycle and the ascorbatedriven Fenton reaction. Free Rad. Res. Comms. 10:265-280. 1990 https://doi.org/10.3109/10715769009149895