DOI QR코드

DOI QR Code

Effects of Water Temperature and Photoperiod on the Oxygen Consumption Rate of Fasted Juvenile Parrot Fish, Oplegnathus fasciatus

돌돔, Oplegnathus fasciatus 치어의 절식시 산소 소비율에 미치는 수온과 광주기의 영향

  • 오승용 (한국해양연구원 해양자원연구본부) ;
  • 노충환 (한국해양연구원 해양자원연구본부) ;
  • 강래선 (한국해양연구원 해양자원연구본부) ;
  • 명정구 (한국해양연구원 해양자원연구본부)
  • Published : 2006.12.31

Abstract

The effect of water temperature and photoperiod on the oxygen consumption of the fasted juvenile parrot fish, Oplegnathus fasciatus was investigated to provide empirical data for the early-stage culture management and bioenergetic growth model of the species. The mean body weight of the juvenile used for the experiment was $21.5{\pm}1.9g$, and the oxygen consumption rate was measured under four water temperatures (10, 15, 20 and $25^{\circ}C$) and three photoperiods (24L:0D, 12L:12D and OL:24D) with an interval of 5 minutes for 24 hours using a continuous flow-through respirometer. In each treatment three replicates were set up and 15 juveniles were totally involved. The oxygen consumption rates increased with increasing water temperature under all photoperiod treatments (P<0.001). Mean oxygen consumption rates at 10, 15, 20 and $25^{\circ}C$ ranged $202.1{\sim}403.4,\;306.7{\sim}502.2,\;536.7{\sim}791.0\;and\;879.9{\sim}1,077.4mg\;O_2\;kg^{-1}h^{-1}$, respectively. $Q_{10}$ values ranged $1.58{\sim}2.30$ between 10 and $15^{\circ}C,\;2.44{\sim}3.06$ between 15 and $20^{\circ}C\;and\;1.86{\sim}2.6y9$ between 20 and $25^{\circ}C$, respectively. Mean oxygen consumption rates of O. fasciatus were the highest in continuous light (24L:0D) followed by 12L:12D and 0L:24D (P<0.001). The oxygen consumption of fish exposed to the 12L:12D photoperiod was significantly higher during the light phase than during the dark phase under all temperature treatments (P<0.001). In summary, oxygen consumption rates of the juvenile parrot fish increase with increasing water temperature and lengthening daylight period; and, thereby, changes in water quality resulted from the depletion of oxygen under high temperature and long daylight photoperiod conditions should be monitored.

돌돔 치어의 사육 관리 및 생체역학 모델 결정을 위한 기초자료를 수집하기 위해 수온과 광주기에 따른 산소 소 비율을 조사하였다. 절식한 돌돔(평균 무게 $21.5{\pm}1.9g$ 총 180마리) 치어를 대상으로 네 가지 수온(10, 15, 20, $25^{\circ}C$ 세 가지 광주기(24L:0D, 12L:12D, 0L:24D)에 따라 유수식 형태의 호흡실을 이용하여 24시간 동안 5분 간격으로(3반복) 산소 소비율을 측정하였다. 수온과 광주기 그리고 두 인자의 상호작용 모두가 돌돔 치어의 산소 소비율에 유의한 영향을 미쳤다.(P<0.001). 각 광주기 조건에서 수온 상승에 따라 산소 소비율은 유의적으로 증가하였다(P<0.001). 10, 15, 20그리고 $25^{\circ}C$에서의 시간당 평균 산소 소비율은 각각 $202.1{\sim}403.4,\;306.7{\sim}502.2,\;536.7{\sim}791.0$ 그리고 $879.9{\sim}1,077.4mg\;O_2\;kg^{-1}h^{-1}$였으며, $Q_{10}$ 값은 $10{\sim}15,\;15{\sim}20,\;20{\sim}25^{\circ}C$에서 각각 $1.58{\sim}2.30,\;2.44{\sim}3.06,\;1.86{\sim}2.69$이었다. 모든 수온 조건에서 연속 명기(24L:0D)일 때 산소 소비율은 연속 암기(0L:24D)일 때보다 유의하게 높았다(P<0.001). l2L:12D의 명기에서의 산소 소비율은 같은 조건의 암기 때보다 유의하게 높은 산소 소비율을 보였다(P<0.001). 결론적으로, 돌돔 치어 사 육시 고수온 및 긴 낮 시간이 유지될 때 사육수의 산소 결핍 현상에 주의를 기울여야 한다.

Keywords

References

  1. Avnimelech, Y., N. Mozes, and B. Weber. 1992. Effects of aeration and mixing on nitrogen and organic matter transformations in simulated fish ponds. Aquacult. Eng., 11, 157-169. https://doi.org/10.1016/0144-8609(92)90002-F
  2. Beamish, F.W.H. 1964. Seasonal changes in the standard rate of oxygen consumption of fishes. Can. J. Zool., 42, 189-194. https://doi.org/10.1139/z64-017
  3. Biswas, A.K., M. Endo, and T. Takeuchi. 2002. Effect of different photoperiod cycles on metabolic rate and energy loss of both fed and unfed young tilapia Oreochromis niloticus: Part I. Fish. Sci., 68, 465-477. https://doi.org/10.1046/j.1444-2906.2002.00450.x
  4. Biswas, A.K. and T. Takeuchi. 2002. Effect of different photoperiod cycles on metabolic rate and energy loss of both fed and unfed adult tilapia Oreochromis niloticus: Part II. Fish. Sci., 68, 543-553. https://doi.org/10.1046/j.1444-2906.2002.00460.x
  5. Bjornsson, B.T. 1997. The biology of salmon growth hormone: from daylight to dominance. Fish Physiol. Biochem., 17, 9-24. https://doi.org/10.1023/A:1007712413908
  6. Brett, J.R. 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Bd. Can., 21, 1183-1226. https://doi.org/10.1139/f64-103
  7. Brett, J.R. and T.D.D. Groves. 1979. Physiological energetics. p. 279-352. In: Fish Physiology. eds. by W.H. Hoar, D.J. Randall, and J.R. Brett. Academic Press, New York.
  8. Bridges, C.R. 1988. Respiratory adaptations in intertidal fish. Am. Zool., 28, 79-96. https://doi.org/10.1093/icb/28.1.79
  9. Cai, Y. and R.C. Summerfelt. 1992. Effects of temperature and size on oxygen consumption and ammonia excretion by walleye. Aquaculture, 104, 127-138. https://doi.org/10.1016/0044-8486(92)90143-9
  10. Dalla Via, J., P. Villani, E. Gasteiger, and H. Niederstatter. 1998. Oxygen consumption in sea bass fingerling Dicentrarchus labrax exposed to acute salinity and temperature changes: metabolic basis for maximum stocking density estimations. Aquaculture, 169, 303-313. https://doi.org/10.1016/S0044-8486(98)00375-5
  11. Das, T., A.K. Pal, S.K. Chakraborty, S.M. Manush, N.P. Sahu, and S.C. Mukherjee. 2005. Thermal tolerence, growth and oxygen consumption of Libeo rohita fry (Hamilton, 1822) acclimated to four temperatures. J. Therm. Biol., 30, 378-383. https://doi.org/10.1016/j.jtherbio.2005.03.001
  12. Fonds, M., R. Cronie, A.D. Vethaak, and P. Van Der Puly. 1992. Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Neth. J. Sea Res., 29, 127-143. https://doi.org/10.1016/0077-7579(92)90014-6
  13. Forsberg, O.L. 1994. Modeling oxygen consumption rates of post-smolt Atlantic salmon in commercial-scale landbased farms. Aquacult. Int., 2, 180-196.
  14. Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. p. 1-98. In: Fish Physiology. eds. by W.S. Hoar and D.J. Randall. Academic Press, New York.
  15. Imsland, A.K., A. Folkvor, and S.O. Stefansson. 1995. Growth, oxygen consumption and activity of juvenile turbot (Scophthalmus maximus L.) reared under different temperatures and photoperiods. Neth. J. Sea Res., 34, 149-159. https://doi.org/10.1016/0077-7579(95)90023-3
  16. Jo, J.Y. and Y.H. Kim. 1999. Oxygen consumption of far eastern catfish, Silurus asotus, on the different water temperatures and photoperiods. J. Kor. Fish. Soc., 32, 56-61. (In Korean)
  17. Jobling, M. 1982. A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J. Fish Biol., 20, 501-516. https://doi.org/10.1111/j.1095-8649.1982.tb03951.x
  18. Jonassen, T.M., A.K. Imsland, S. Kadowaki, and S.O. Stefansson. 2000. Interaction of temperature and photoperiod on growth of Atlantic halibut Hippoglossus hippoglossus L. Aquac. Res., 31, 219-227. https://doi.org/10.1046/j.1365-2109.2000.00447.x
  19. Kaushik, S.J. 1998. Nutritional bioenergetics and estimation of waste production in non-salmonids. Aquat. Living Resour., 11, 211-217. https://doi.org/10.1016/S0990-7440(98)89003-7
  20. Kim, I.N., Y.J. Chang, and J.Y. Kwon. 1995. The patterns of oxygen consumption in six species of marine fish. J. Kor. Fish. Soc., 28, 373-381.
  21. Kim, W.S., J.M. Kim, S.K. Yi, and H.T. Huh. 1997. Endogenous circadian rhythm in the river puffer fish Takifugu obscurus. Mar. Ecol. Prog. Ser., 153, 293-298. https://doi.org/10.3354/meps153293
  22. Lyytikainen, T. and M. Jobling. 1998. The effects of temperature fluctuations on oxygen consumption and ammonia excretion of underyearling Lake Inari Arctic charr. J. Fish Biol., 52, 1186-1198.
  23. Mitsunaga, Y., W. Sakamoto, N. Arai, and A. Kasai. 1999. Estimation of the metabolic rate of wild red sea bream Pagrus major in different water temperatures. Nippon Suisan Gakkaishi, 65, 48-54. https://doi.org/10.2331/suisan.65.48
  24. Moore, J.M. and C.E. Boyd. 1984. Comparisons of devices for aerating inflow pipes. Aquaculture, 38, 89-96. https://doi.org/10.1016/0044-8486(84)90141-8
  25. Nagarajan, K. and V. Gopal. 1983. Effect of photoperiod on oxygen consumption and food utilization in Tilapia mossambica Peters. Proc. Nat. Acad. Sci. India, 53B, 217-225.
  26. Oh, S.Y. and C.H. Noh. 2006. Effects of water temperature and photoperiod on the oxygen consumption rate of juvenile dark-banded rockfish, Sebastes inermis. J. Aquacult., 19, 210-215. (In Korean)
  27. Roberts, J.P. 1990. Energy-dense feeds help the environment. Fish Farmer, 7, 50-51.
  28. Ross, L.G. and R.W. McKinney. 1988. Respiratory cycles in Oreochromis niloticus (L.) measured using a six-channel microcomputer-operated respirometer. Comp. Biochem. Physiol., 89, 637-643. https://doi.org/10.1016/0300-9629(88)90846-8
  29. Spanopoulos-Hernandez, M., C.A. Martinez-Palacios, R.C. Vanegas-Perez, C. Rosas, and L.G. Ross. 2005. The combined effects of salinity and temperature on the oxygen consumption of juvenile shrimps Litopenaeus stylirostris (Stimpson, 1874). Aquaculture, 244, 341-348. https://doi.org/10.1016/j.aquaculture.2004.11.023
  30. Tytler, P. and P. Calow. 1985. Fish Energectics: New Perspectives. Johns Hopkins Univ. Press, Baltimore, MD. 349 p.
  31. Wang, X., K. Kim, S.C. Bai, M. Huh, and B. Cho. 2003. Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture, 215, 203-211. https://doi.org/10.1016/S0044-8486(02)00042-X
  32. Withey, K.G. and R.L. Saunders. 1973. Effect of reciprocal photoperiod regime on standard rate of oxygen consumption of postsmolt Atlantic salmon (Salmo salar). J. Fish. Res. Bd. Can., 30, 1898-1900. https://doi.org/10.1139/f73-307
  33. Wuenschel, M.J., A.R. Jugovich, and J.A. Hare. 2005. Metabolic response of juvenile gray snapper (Lutjanus griseus) to temperature and salinity: Physiological cost of different environments. J. Exp. Mar. Biol. Ecol., 321, 145-154. https://doi.org/10.1016/j.jembe.2005.01.009
  34. Wuenschel, M.J., R.G. Werner, and D.E. Hoss. 2004. Effect of body size, temperature and salinity on the routine metabolism of larval and juvenile spotted seatrout. J. Fish Biol., 64, 1088-1102. https://doi.org/10.1111/j.1095-8649.2004.00374.x

Cited by

  1. Effects of Stocking Density and Dissolved Oxygen Concentration on the Growth and Hematology of the Parrotfish Oplegnathus fasciatus in a Recirculating Aquaculture System (RAS) vol.44, pp.6, 2011, https://doi.org/10.5657/KFAS.2011.0747
  2. Effect of Water Temperature and Photoperiod on the Oxygen Consumption Rate of Juvenile Pacific Cod Gadus macrocephalus vol.32, pp.3, 2010, https://doi.org/10.4217/OPR.2010.32.3.229
  3. Recovery of Pseudomonas anguilliseptica from Diseased Striped Beakperch (Oplegnathus fasciatus) in Korea vol.13, pp.2, 2010, https://doi.org/10.5657/fas.2010.13.2.190
  4. Effect of Ammonia Concentration in Rearing Water on Growth and Blood Components of the Parrotfish Oplegnathus fasciatus vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.0840