• 제목/요약/키워드: $L_k$-conjecture

검색결과 20건 처리시간 0.019초

Langlands Functoriality Conjecture

  • Yang, Jae-Hyun
    • Kyungpook Mathematical Journal
    • /
    • 제49권2호
    • /
    • pp.355-387
    • /
    • 2009
  • Functoriality conjecture is one of the central and influential subjects of the present day mathematics. Functoriality is the profound lifting problem formulated by Robert Langlands in the late 1960s in order to establish nonabelian class field theory. In this expository article, I describe the Langlands-Shahidi method, the local and global Langlands conjectures and the converse theorems which are powerful tools for the establishment of functoriality of some important cases, and survey the interesting results related to functoriality conjecture.

On a Conjecture of E. T. H. Wang

  • Kim, Si Joo
    • 호남수학학술지
    • /
    • 제11권1호
    • /
    • pp.15-19
    • /
    • 1989
  • A conjecture of E. T. H. Wang asserts that if every diagonal disjoint from m mutually disjoint zero diagonals of $A{\in}{\Omega}_n$ has a constant sum, then all entries off the m zero diagonals are equal to l/(n-m). E. T. H. Wang proved the conjecture for m=0, 1, n-2 and n-1. In the present paper, it is proved that the conjecture holds true for m=2.

  • PDF

PAIRED HAYMAN CONJECTURE AND UNIQUENESS OF COMPLEX DELAY-DIFFERENTIAL POLYNOMIALS

  • Gao, Yingchun;Liu, Kai
    • 대한수학회보
    • /
    • 제59권1호
    • /
    • pp.155-166
    • /
    • 2022
  • In this paper, the paired Hayman conjecture of different types are considered, namely, the zeros distribution of f(z)nL(g) - a(z) and g(z)nL(f) - a(z), where L(h) takes the derivatives h(k)(z) or the shift h(z+c) or the difference h(z+c)-h(z) or the delay-differential h(k)(z+c), where k is a positive integer, c is a non-zero constant and a(z) is a nonzero small function with respect to f(z) and g(z). The related uniqueness problems of complex delay-differential polynomials are also considered.

A NOTE ON UNITS OF REAL QUADRATIC FIELDS

  • Byeon, Dong-Ho;Lee, Sang-Yoon
    • 대한수학회보
    • /
    • 제49권4호
    • /
    • pp.767-774
    • /
    • 2012
  • For a positive square-free integer $d$, let $t_d$ and $u_d$ be positive integers such that ${\epsilon}_d=\frac{t_d+u_d{\sqrt{d}}}{\sigma}$ is the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{d})$, where ${\sigma}=2$ if $d{\equiv}1$ (mod 4) and ${\sigma}=1$ otherwise For a given positive integer $l$ and a palindromic sequence of positive integers $a_1$, ${\ldots}$, $a_{l-1}$, we define the set $S(l;a_1,{\ldots},a_{l-1})$ := {$d{\in}\mathbb{Z}|d$ > 0, $\sqrt{d}=[a_0,\overline{a_1,{\ldots},2a_0}]$}. We prove that $u_d$ < $d$ for all square-free integer $d{\in}S(l;a_1,{\ldots},a_{l-1})$ with one possible exception and apply it to Ankeny-Artin-Chowla conjecture and Mordell conjecture.

LK-BIHARMONIC HYPERSURFACES IN SPACE FORMS WITH THREE DISTINCT PRINCIPAL CURVATURES

  • Aminian, Mehran
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1221-1244
    • /
    • 2020
  • In this paper we consider LK-conjecture introduced in [5, 6] for hypersurface Mn in space form Rn+1(c) with three principal curvatures. When c = 0, -1, we show that every L1-biharmonic hypersurface with three principal curvatures and H1 is constant, has H2 = 0 and at least one of the multiplicities of principal curvatures is one, where H1 and H2 are first and second mean curvature of M and we show that there is not L2-biharmonic hypersurface with three disjoint principal curvatures and, H1 and H2 is constant. For c = 1, by considering having three principal curvatures, we classify L1-biharmonic hypersurfaces with multiplicities greater than one, H1 is constant and H2 = 0, proper L1-biharmonic hypersurfaces which H1 is constant, and L2-biharmonic hypersurfaces which H1 and H2 is constant.

CLOSED CONVEX SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACES

  • Sun, Zhongyang
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2001-2011
    • /
    • 2017
  • In 1997, H. Li [12] proposed a conjecture: if $M^n(n{\geqslant}3)$ is a complete spacelike hypersurface in de Sitter space $S^{n+1}_1(1)$ with constant normalized scalar curvature R satisfying $\frac{n-2}{n}{\leqslant}R{\leqslant}1$, then is $M^n$ totally umbilical? Recently, F. E. C. Camargo et al. ([5]) partially proved the conjecture. In this paper, from a different viewpoint, we study closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ and also prove that $M^n$ is totally umbilical if the square of length of second fundamental form of the closed convex spacelike hypersurface $M^n$ is constant, i.e., Theorem 1. On the other hand, we obtain that if the sectional curvature of the closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ satisfies $K(M^n)$ > 0, then $M^n$ is totally umbilical, i.e., Theorem 2.

A RESULT ON A CONJECTURE OF W. LÜ, Q. LI AND C. YANG

  • Majumder, Sujoy
    • 대한수학회보
    • /
    • 제53권2호
    • /
    • pp.411-421
    • /
    • 2016
  • In this paper, we investigate the problem of transcendental entire functions that share two values with one of their derivative. Let f be a transcendental entire function, n and k be two positive integers. If $f^n-Q_1$ and $(f^n)^{(k)}-Q_2$ share 0 CM, and $n{\geq}k+1$, then $(f^n)^{(k)}{\equiv}{\frac{Q_2}{Q_1}}f^n$. Furthermore, if $Q_1=Q_2$, then $f=ce^{\frac{\lambda}{n}z}$, where $Q_1$, $Q_2$ are polynomials with $Q_1Q_2{\not\equiv}0$, and c, ${\lambda}$ are non-zero constants such that ${\lambda}^k=1$. This result shows that the Conjecture given by W. $L{\ddot{u}}$, Q. Li and C. Yang [On the transcendental entire solutions of a class of differential equations, Bull. Korean Math. Soc. 51 (2014), no. 5, 1281-1289.] is true. Also we exhibit some examples to show that the conditions of our result are the best possible.

A METHOD OF COMPUTATIONS OF CONGRUENT NUMBERS AND ELLIPTIC CURVES

  • Park, Jong-Youll;Lee, Heon-Soo
    • 호남수학학술지
    • /
    • 제32권1호
    • /
    • pp.177-192
    • /
    • 2010
  • We study the concepts of congruent number problems and elliptic curves. We research the structure of the group of elliptic curves and find out a method of the computation of L($E_n$, 1) and L'($E_n$, 1) by using SAGE program. In this paper, we obtain the first few congruent numbers for n ${\leq}$ 2500.