DOI QR코드

DOI QR Code

PAIRED HAYMAN CONJECTURE AND UNIQUENESS OF COMPLEX DELAY-DIFFERENTIAL POLYNOMIALS

  • Gao, Yingchun (Department of Mathematics Nanchang University) ;
  • Liu, Kai (Department of Mathematics Nanchang University)
  • Received : 2021.02.28
  • Accepted : 2021.08.19
  • Published : 2022.01.31

Abstract

In this paper, the paired Hayman conjecture of different types are considered, namely, the zeros distribution of f(z)nL(g) - a(z) and g(z)nL(f) - a(z), where L(h) takes the derivatives h(k)(z) or the shift h(z+c) or the difference h(z+c)-h(z) or the delay-differential h(k)(z+c), where k is a positive integer, c is a non-zero constant and a(z) is a nonzero small function with respect to f(z) and g(z). The related uniqueness problems of complex delay-differential polynomials are also considered.

Keywords

Acknowledgement

The authors would like to thank the reviewer for useful comments and providing the references [1] and [18].

References

  1. T. T. H. An and N. V. Phuong, A lemma about meromorphic functions sharing a small functions, Comput. Methods Funct. Theory. https://doi.org/10.1007/s40315-021-00388-3
  2. W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373. https://doi.org/10.4171/RMI/176
  3. H. H. Chen and M. L. Fang, The value distribution of fnf', Sci. China Ser. A 38 (1995), no. 7, 789-798.
  4. J. Clunie, On a result of Hayman, J. London Math. Soc. 42 (1967), 389-392. https://doi.org/10.1112/jlms/s1-42.1.389
  5. F. Gross, On the equation fn + gn = 1, Bull. Amer. Math. Soc. 72 (1966), 86-88. https://doi.org/10.1090/S0002-9904-1966-11429-5
  6. R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. https://doi.org/10.1090/S0002-9947-2014-05949-7
  7. W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9-42. https://doi.org/10.2307/1969890
  8. W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
  9. I. Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, 1993. https://doi.org/10.1515/9783110863147
  10. I. Laine and Z. Latreuch, Zero distribution of some delay-differential polynomials, Bull. Korean Math. Soc. 57 (2020), no. 6, 1541-1565. https://doi.org/10.4134/BKMS.b200051
  11. I. Laine and C.-C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 8, 148-151. http://projecteuclid.org/euclid.pja/1201012520 https://doi.org/10.3792/pjaa.83.148
  12. K. Liu, I. Laine, and L. Z. Yang, Complex Delay-Differential Equations, Berlin, Boston: De Gruyter, 2021. https://doi.org/10.1515/9783110560565
  13. K. Liu, X.-L. Liu, and T.-B. Cao, Value distributions and uniqueness of difference polynomials, Adv. Difference Equ. 2011 (2011), Art. ID 234215, 12 pp. https://doi.org/10.1155/2011/234215
  14. X.-L. Liu, K. Liu, and L.-C. Zhou, The zeros of complex differential-difference polynomials, Adv. Difference Equ. 2014 (2014), 157, 11 pp. https://doi.org/10.1186/1687-1847-2014-157
  15. K. Liu and L.-Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (2009), no. 3, 270-278. https://doi.org/10.1007/s00013-009-2895-x
  16. X.-D. Luo and W.-C. Lin, Value sharing results for shifts of meromorphic functions, J. Math. Anal. Appl. 377 (2011), no. 2, 441-449. https://doi.org/10.1016/j.jmaa.2010.10.055
  17. E. Mues, Uber ein Problem von Hayman, Math. Z. 164 (1979), no. 3, 239-259. https://doi.org/10.1007/BF01182271
  18. A. Schweizer, What is the definition of two meromorphic functions sharing a small function?, arXiv:1705.05048v2.
  19. Q. Y. Wang and Y. S. Ye, Value distribution and uniqueness of the difference polynomials of meromorphic functions, Chinese Ann. Math. Ser. A 35 (2014), no. 6, 675-684.
  20. C.-C. Yang and X.-H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
  21. C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
  22. L. Zalcman, On some problems of Hayman, Bar-Ilan University, 1995.