Acknowledgement
The authors would like to thank the reviewer for useful comments and providing the references [1] and [18].
References
- T. T. H. An and N. V. Phuong, A lemma about meromorphic functions sharing a small functions, Comput. Methods Funct. Theory. https://doi.org/10.1007/s40315-021-00388-3
- W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373. https://doi.org/10.4171/RMI/176
- H. H. Chen and M. L. Fang, The value distribution of fnf', Sci. China Ser. A 38 (1995), no. 7, 789-798.
- J. Clunie, On a result of Hayman, J. London Math. Soc. 42 (1967), 389-392. https://doi.org/10.1112/jlms/s1-42.1.389
- F. Gross, On the equation fn + gn = 1, Bull. Amer. Math. Soc. 72 (1966), 86-88. https://doi.org/10.1090/S0002-9904-1966-11429-5
- R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. https://doi.org/10.1090/S0002-9947-2014-05949-7
- W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9-42. https://doi.org/10.2307/1969890
- W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- I. Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, 1993. https://doi.org/10.1515/9783110863147
- I. Laine and Z. Latreuch, Zero distribution of some delay-differential polynomials, Bull. Korean Math. Soc. 57 (2020), no. 6, 1541-1565. https://doi.org/10.4134/BKMS.b200051
- I. Laine and C.-C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 8, 148-151. http://projecteuclid.org/euclid.pja/1201012520 https://doi.org/10.3792/pjaa.83.148
- K. Liu, I. Laine, and L. Z. Yang, Complex Delay-Differential Equations, Berlin, Boston: De Gruyter, 2021. https://doi.org/10.1515/9783110560565
- K. Liu, X.-L. Liu, and T.-B. Cao, Value distributions and uniqueness of difference polynomials, Adv. Difference Equ. 2011 (2011), Art. ID 234215, 12 pp. https://doi.org/10.1155/2011/234215
- X.-L. Liu, K. Liu, and L.-C. Zhou, The zeros of complex differential-difference polynomials, Adv. Difference Equ. 2014 (2014), 157, 11 pp. https://doi.org/10.1186/1687-1847-2014-157
- K. Liu and L.-Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (2009), no. 3, 270-278. https://doi.org/10.1007/s00013-009-2895-x
- X.-D. Luo and W.-C. Lin, Value sharing results for shifts of meromorphic functions, J. Math. Anal. Appl. 377 (2011), no. 2, 441-449. https://doi.org/10.1016/j.jmaa.2010.10.055
- E. Mues, Uber ein Problem von Hayman, Math. Z. 164 (1979), no. 3, 239-259. https://doi.org/10.1007/BF01182271
- A. Schweizer, What is the definition of two meromorphic functions sharing a small function?, arXiv:1705.05048v2.
- Q. Y. Wang and Y. S. Ye, Value distribution and uniqueness of the difference polynomials of meromorphic functions, Chinese Ann. Math. Ser. A 35 (2014), no. 6, 675-684.
- C.-C. Yang and X.-H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
- C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
- L. Zalcman, On some problems of Hayman, Bar-Ilan University, 1995.