PAIRED HAYMAN CONJECTURE AND UNIQUENESS OF COMPLEX DELAY-DIFFERENTIAL POLYNOMIALS

Yingchun Gao and Kai Liu

Abstract

In this paper, the paired Hayman conjecture of different types are considered, namely, the zeros distribution of $f(z)^{n} L(g)-a(z)$ and $g(z)^{n} L(f)-a(z)$, where $L(h)$ takes the derivatives $h^{(k)}(z)$ or the shift $h(z+c)$ or the difference $h(z+c)-h(z)$ or the delay-differential $h^{(k)}(z+c)$, where k is a positive integer, c is a non-zero constant and $a(z)$ is a nonzero small function with respect to $f(z)$ and $g(z)$. The related uniqueness problems of complex delay-differential polynomials are also considered.

1. Introduction and main results

We assume that the reader is familiar with the basic notations and fundamental results of Nevanlinna theory $[8,21]$, such as the proximity function $m(r, f)$, the counting function $N(r, f)$, the characteristic function $T(r, f)$, the order $\rho(f)$, the hyper-order $\rho_{2}(f)$, and so on. A small function $a(z)$ with respect to $f(z)$ means $T(r, a(z))=o(T(r, f))$ as $r \rightarrow \infty$ outside a possible exceptional set of finite logarithmic measure. We say that two meromorphic functions $f(z)$ and $g(z)$ share a small function $a(z) \mathrm{CM}$, if $f(z)-a(z)$ and $g(z)-a(z)$ admit the same zeros with the same multiplicities, the abbreviation CM for counting multiplicities.

In 1959, Hayman published one of his significant papers [7], where the zero distribution of complex differential polynomials was considered. For example, [7, Theorem 10] can be stated as follows.

Theorem A. If $f(z)$ is a transcendental entire function and $n \geq 2$ is a positive integer, then $f(z)^{n} f^{\prime}(z)-a$ has infinitely many zeros, where a is a non-zero constant.

Recall that Clunie [4] proved that Theorem A is also true for the case $n=1$. The well-known Hayman conjecture is also presented in [7]:

Received February 28, 2021; Revised July 5, 2021; Accepted August 19, 2021.
2010 Mathematics Subject Classification. Primary 30D35, 39A05.
Key words and phrases. Paired Hayman conjecture, uniqueness, meromorphic functions, Delay-differential polynomials.

This work was partially supported by the NSFC (No.12061042) and the Natural Science Foundation of Jiangxi (No. 20202BAB201003).

Hayman conjecture. If $f(z)$ is a transcendental meromorphic function and n is a positive integer, then $f(z)^{n} f^{\prime}(z)-a$ has infinitely many zeros, where a is a non-zero constant.

Hayman conjecture has been proved completely. The case of $n \geq 3$ is proved by Hayman [7, Corollary to Theorem 9], by Mues [17] for $n=2$ and by Bergweiler and Eremenko [2, Theorem 2], Chen and Fang [3] and Zalcman [22] for $n=1$, respectively. Hence, Theorem A can be seen as the start to consider the zero distribution of complex differential polynomials. In 2007, Laine and Yang [11, Theorem 2] obtained the zero distribution of complex difference polynomials as follows, which can be viewed as the difference version of Hayman conjecture.

Theorem B. If $f(z)$ is a transcendental entire function of finite order, c is a non-zero constant and $n \geq 2$, then $f(z)^{n} f(z+c)-a$ has infinitely many zeros, where a is a non-zero constant.

Now, some improvements on Theorem B have been obtained, such as the constant a can be replaced by a non-zero small function $a(z)$ with respect to $f(z), f(z)^{n}$ can be improved to certain polynomials, see [16, Theorem 1]. Liu and Yang [15, Theorem 1.4] also considered the zeros of $f(z)^{n}[f(z+c)-f(z)]-$ $p(z)$, where $p(z)$ is a non-zero polynomial.

For the case that $f(z)$ is a transcendental meromorphic function of hyperorder less than one in Theorem B, Liu, Liu and Cao [13] proved Theorem B is also true for $n \geq 6$, Wang and Ye [19] proved Theorem B is true for the case $n \geq 4$, and counter-examples of Theorem B of $n \leq 3$ can be found in [13], more details and improvements of difference versions of Hayman conjecture can be found in Liu, Laine and Yang [12, Chapter 2].

The delay-differential version of Hayman conjecture was first considered by Liu, Liu and Zhou [14], using the ideas of common zeros and common poles in Wang and Ye [19], the improvement below and more results can be found in [12, Chapter 2]. The latest results related to delay-differential versions of Hayman conjecture can also be found in Laine and Latreuch [10].

Theorem C. Let $f(z)$ be a transcendental meromorphic function of hyperorder $\rho_{2}(f)<1$ and a (z) be a non-zero small function with respect to $f(z)$. If $n \geq k+4$, resp. if $n \geq 3$ and $f(z)$ is transcendental entire, then $f(z)^{n} f^{(k)}(z+$ $c)-a(z)$ has infinitely many zeros.

In this paper, we will consider the paired Hayman conjecture of complex delay-differential polynomials of different types. In fact, we consider the zeros distribution of $f(z)^{n} L(g)-a(z)$ and $g(z)^{n} L(f)-a(z)$, where $L(h)$ takes the derivatives $h^{(k)}(z)(k \geq 1)$ or the shift $h(z+c)$ or the difference $h(z+c)-h(z)$ (when considering this case, we assume that $h(z)$ is not a periodic function with period c in the paper) or the delay-differential $h^{(k)}(z+c)(k \geq 1)$, where c is a non-zero constant and $a(z)$ is a non-zero small function with respect to
$f(z)$ and $g(z)$. Denote \mathcal{M} for the function class of transcendental meromorphic functions and \mathcal{M}^{\prime} for transcendental meromorphic functions of hyper-order less than one. Denote \mathcal{E} for the function class of transcendental entire functions and \mathcal{E}^{\prime} for transcendental entire functions of hyper-order less than one.

Theorem 1.1. If one of the following conditions is satisfied:
(i) $L(h)=h^{(k)}(z), n \geq k+4$ and $h \in \mathcal{M}$ or $n \geq 3$ and $h \in \mathcal{E}$;
(ii) $L(h)=h(z+c), n \geq 4$ and $h \in \mathcal{M}^{\prime}$ or $n \geq 3$ and $h \in \mathcal{E}^{\prime}$;
(iii) $L(h)=h(z+c)-h(z), n \geq 5$ and $h \in \mathcal{M}^{\prime}$ or $n \geq 3$ and $h \in \mathcal{E}^{\prime}$;
(iv) $L(h)=h^{(k)}(z+c), n \geq k+4$ and $h \in \mathcal{M}^{\prime}$ or $n \geq 3$ and $h \in \mathcal{E}^{\prime}$,
then at least one of $f(z)^{n} L(g)-a(z)$ and $g(z)^{n} L(f)-a(z)$ has infinitely many zeros, where $a(z)$ is a non-zero small function with respect to $f(z)$ and $g(z)$.

Obviously, if $f \equiv g$, then Theorem 1.1 may reduce to Hayman conjecture of different types. We proceed to give some observations on the case of transcendental entire functions $f(z), g(z)$ and $a(z) \equiv 0$. If $f(z)^{n} g^{(k)}(z)$ and $g(z)^{n} f^{(k)}(z)$ have finitely many zeros, then the functions $f(z), f^{(k)}(z), g(z), g^{(k)}(z)$ must have finitely many zeros. If $k \geq 2$, then $f(z)=P_{1}(z) e^{Q_{1}(z)}$ and $g(z)=$ $P_{2}(z) e^{Q_{2}(z)}$, where $P_{i}(z), Q_{i}(z),(i=1,2)$ are polynomials by [8, Theorem 3.8]. In particular, if $f(z)^{n} g^{(k)}(z)$ and $g(z)^{n} f^{(k)}(z)(k \geq 2)$ have no zeros, then $f(z)=e^{A_{1} z+B_{1}}$ and $g(z)=e^{A_{2} z+B_{2}}$, where A_{1}, A_{2} are non-zero constants, see [8, Theorem 3.8]. If $k=1$, we can take $f(z)=e^{h_{1}(z)}$ and $g(z)=e^{h_{2}(z)}$ where $h_{i}^{\prime}(z)(i=1,2)$ are entire functions without zeros. The same discussions can be applied to the case that $f(z)^{n} g^{(k)}(z+c)$ and $g(z)^{n} f^{(k)}(z+c)$ have finitely many zeros. If $f(z)^{n} g(z+c)$ and $g(z)^{n} f(z+c)$ have finitely many zeros, then $f(z)$ and $g(z)$ must have finitely many zeros. If $f(z)^{n}(g(z+c)-g(z))$ and $g(z)^{n}(f(z+c)-f(z))$ have finitely many zeros, then the functions $f(z)$, $f(z+c)-f(z), g(z)$ and $g(z+c)-g(z)$ must have finitely many zeros. Furthermore, assume that $f, g \in \mathcal{E}^{\prime}$, we can obtain $f(z)=e^{A_{1} z+B_{1}}$ and $g(z)=e^{A_{2} z+B_{2}}$, where A_{1}, A_{2} are non-zero constants. From Hadamard factorization theorem, we can assume that $f(z)=P(z) e^{H(z)}$, where $P(z)$ is a polynomial and $H(z)$ is an entire function with $\rho(H)<1$, we then assume $f(z+c)-f(z)=T(z) e^{S(z)}$, where $T(z)$ is a polynomial and $S(z)$ is an entire function with $\rho(S)<1$. Thus,

$$
P(z+c) e^{H(z+c)}-P(z) e^{H(z)}=T(z) e^{S(z)} .
$$

Rewrite the above equation as follows:

$$
\frac{P(z+c)}{T(z)} e^{H(z+c)-S(z)}-\frac{P(z)}{T(z)} e^{H(z)-S(z)}=1 .
$$

Using the second main theorem of Nevanlinna, we see $H(z+c)-S(z)$ must be a constant, and we also have $H(z)-S(z)$ must be a constant. Thus, $H(z+c)-$ $H(z)$ is also a constant, and it implies that $\rho(H) \geq 1$ if $H(z)$ is transcendental, which is a contradiction. Thus $H(z)$ is a linear polynomial. It is also an interesting problem to obtain the forms of f, g such that $f(z)^{n} L(g)-a(z)$ and $g(z)^{n} L(f)-a(z)$ have both finitely many zeros, where $a(z)$ is a non-zero small
function with respect to $f(z), g(z)$ and n does not satisfy the conditions in Theorem 1.1.

Remark 1.2. If $n=1$, then Theorem 1.1 is not true. For example, take $f(z)=$ $e^{z}, g(z)=e^{-z}$ and $a(z)(\not \equiv 0,1,-1)$ is a polynomial in Case (i), take $f(z)=$ $1+e^{z}$ and $g(z)=-1-e^{z}$ and $e^{c}=-1$ and $a(z)=-1$ in Case (ii), take $f(z)=z+e^{z}, g(z)=-z+e^{z}, e^{c}=1$ and $a(z)=-z c$ in Case (iii), take $f(z)=e^{z}, g(z)=e^{-z}, e^{c}=-1$ and $a(z)(\not \equiv 0,1,-1)$ is a polynomial in Case (iv).

Remark 1.3. The condition of hyper-order less than one cannot be deleted in Cases (ii), (iii), (iv). For example, take $f(z)=e^{e^{z}}$ and $g(z)=e^{-e^{z}}$, where $e^{c}=n$ and $a(z)$ is a non-constant polynomial in Case (ii), $a(z) \equiv 1$ in (iii), $a(z)$ is a polynomial of e^{z} for different k in (iv).

In the following, we will consider the uniqueness problem on complex delaydifferential polynomials sharing common small functions or common values. Yang and Hua [20] have considered the uniqueness problems on $f(z)^{n} f^{\prime}(z)$ and $g(z)^{n} g^{\prime}(z)$ share one non-zero constant a CM as follows.

Theorem D. Let $f(z)$ and $g(z)$ be two non-constant meromorphic (entire) functions, $n \geq 11(n \geq 7)$ be an integer. If $f(z)^{n} f^{\prime}(z)$ and $g(z)^{n} g^{\prime}(z)$ share the value a CM, then either $f(z)=t g(z)$, where $t^{n+1}=1$ or $f(z)=c_{1} e^{-c z}$ and $g(z)=c_{2} e^{c z}$, where c, c_{1} and c_{2} are constants and $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-a^{2}$.

Combining Theorem 1.1 and Theorem D , it evokes us to consider the uniqueness problems provided that $f(z)^{n} L(g)$ and $g(z)^{n} L(f)$ share a non-zero small function $a(z) \mathrm{CM}$, where $a(z)$ is a small function with respect to $f(z)$ and $g(z)$. For the case of meromorphic functions $f(z), g(z)$, we obtain:

Theorem 1.4. Let f and g be transcendental meromorphic functions. If $f(z)^{n} L(g)$ and $g(z)^{n} L(f)$ share a non-zero small function $a(z) C M$, and one of the following conditions is satisfied
(i) $L(h)=h^{(k)}(z), n \geq 3 k+16$ and $f, g \in \mathcal{M}$;
(ii) $L(h)=h(z+c), n \geq 16$ and $f, g \in \mathcal{M}^{\prime}$;
(iii) $L(h)=h(z+c)-h(z), n \geq 19$ and $f, g \in \mathcal{M}^{\prime}$;
(iv) $L(h)=h^{(k)}(z+c), n \geq 3 k+16$ and $f, g \in \mathcal{M}^{\prime}$,
then $f(z)^{n} L(g)=g(z)^{n} L(f)$ or $f(z)^{n} L(g) g(z)^{n} L(f)=a(z)^{2}$.
For the case of entire functions $f(z)$ and $g(z)$, we obtain:
Theorem 1.5. Let f and g be transcendental entire functions. If $f(z)^{n} L(g)$ and $g(z)^{n} L(f)$ share a non-zero small function $a(z) C M$, and one of the following conditions is satisfied
(i) $L(h)=h^{(k)}(z), n \geq 8$ and $f, g \in \mathcal{E}$;
(ii) $L(h)=h(z+c), n \geq 8$ and $f, g \in \mathcal{E}^{\prime}$;
(iii) $L(h)=h(z+c)-h(z), n \geq 8$ and $f, g \in \mathcal{E}^{\prime}$;
(iv) $L(h)=h^{(k)}(z+c), n \geq 8$ and $f, g \in \mathcal{E}^{\prime}$, then $f(z)^{n} L(g)=g(z)^{n} L(f)$ or $f(z)^{n} L(g) g(z)^{n} L(f)=a(z)^{2}$.

Corollary 1.6. Let f and g be transcendental entire functions and $n \geq 8$. If $f(z)^{n} g^{\prime}(z)$ and $g(z)^{n} f^{\prime}(z)$ share a non-zero constant a $C M$, then $f(z)=\operatorname{tg}(z)$ and $t^{n-1}=1$ or $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$ where c, c_{1} and c_{2} are constants and $\left(c_{1} c_{2}\right)^{n+1} c^{2}=a^{2}$.

Remark 1.7. If $n=1$, then Corollary 1.6 is not true. For example $f(z)=$ $e^{z}+e^{-z}$ and $g(z)=2 e^{z}+2 e^{-z}$, then $f(z) g^{\prime}(z)$ and $g(z) f^{\prime}(z)$ share any nonzero value a CM. If $n=2$, then Corollary 1.6 is also not true. For example $f(z)=e^{z}+1$ and $g(z)=e^{-z}-1$, then $f(z)^{2} g^{\prime}(z)$ and $g(z)^{2} f^{\prime}(z)$ share the value 2 CM .

Corollary 1.8. Let f and g be transcendental entire functions with hyper order less than one and $n \geq 8$. If $f(z)^{n} g(z+c)$ and $g(z)^{n} f(z+c)$ share one non-zero constant a CM, then $f(z)=c_{1} g(z)$ where $c_{1}^{n-1}=1$ or $f(z) g(z)=c_{2}$ where $c_{2}^{n+1}=a^{2}$.

Remark 1.9. If $n=1$, then Corollary 1.8 is not true. For example $f(z)=1+e^{z}$ and $g(z)=e^{-z}-1, e^{c}=-1$, then $f(z) g(z+c)$ and $g(z) f(z+c)$ share -2 CM.

For further studying, we raise the following question.
Question 1. Can we reduce $n \geq 3$ to $n \geq 2$ in Theorem 1.1 for entire functions f, g in \mathcal{E} or \mathcal{E}^{\prime} ? And what is the sharp value n in Theorem 1.1 for meromorphic functions f, g in \mathcal{M} or \mathcal{M}^{\prime} ?

Question 2. How to describe the relationship between f and g from the equations $f(z)^{n} L(g)=g(z)^{n} L(f)$ and $f(z)^{n} L(g) g(z)^{n} L(f)=a(z)^{2}$, where $L(h)$ is defined in Theorem 1.4 and $a(z)$ is a small function with respect to f and g ?

2. Lemmas

Related to the estimate on the zeros of derivatives of meromorphic functions, one basic result is stated as follows, see [21, Theorem 1.14].

Lemma 2.1. Let $f(z)$ be a non-constant meromoprhic function and k be a positive integer. Then

$$
\begin{equation*}
N\left(r, \frac{1}{f^{(k)}(z)}\right) \leq N\left(r, \frac{1}{f(z)}\right)+k \bar{N}(r, f(z))+S(r, f(z)) \tag{2.1}
\end{equation*}
$$

The characteristic function of $L(h)$ is important to estimate the value n in our results, when $L(h)$ takes the derivatives $h^{(k)}(z)$ or the shift $h(z+c)$ or the difference $h(z+c)-h(z)$ or the delay-differential $h^{(k)}(z+c)$, we summarize the results in the following lemma.

Lemma 2.2. (1) $T\left(r, \frac{1}{h^{(k)}(z)}\right) \leq(k+1) T(r, h(z))+S(r, h(z))$, where $h \in$ \mathcal{M}, and $T\left(r, \frac{1}{h^{(k)}(z)}\right) \leq T(r, h(z))+S(r, h(z))$, where $h \in \mathcal{E}$.
(2) $T\left(r, \frac{1}{h(z+c)}\right) \leq T(r, h(z))+S(r, h(z))$, where $h \in \mathcal{M}^{\prime}$.
(3) $T\left(r, \frac{1}{h(z+c)-h(z)}\right) \leq 2 T(r, h(z))+S(r, h(z))$, where $h \in \mathcal{M}^{\prime}$, and

$$
T\left(r, \frac{1}{h(z+c)-h(z)}\right) \leq T(r, h(z))+S(r, h(z))
$$

where $h \in \mathcal{E}^{\prime}$.
(4) $T\left(r, \frac{1}{h^{(k)}(z+c)}\right) \leq(k+1) T(r, h(z))+S(r, h(z))$, where $h \in \mathcal{M}^{\prime}$, and

$$
T\left(r, \frac{1}{h^{(k)}(z+c)}\right) \leq T(r, h(z))+S(r, h(z))
$$

where $h \in \mathcal{E}^{\prime}$.
Proof. The Case (1) is obvious. The Cases (2) and (3) are obtained by [6, Lemma 8.3] and the first main theorem of Nevanlinna. The Case (4) also can be obtained by Case (1) and [6, Lemma 8.3].

Lemma 2.3. If $f, g \in \mathcal{M}$, then

$$
\begin{align*}
n T(r, f)-(k+1) T(r, g) & \leq T\left(r, f^{n} g^{(k)}\right)+S(r, g) \tag{2.2}\\
& \leq n T(r, f)+(k+1) T(r, g) .
\end{align*}
$$

If $f, g \in \mathcal{E}$, then

$$
\begin{equation*}
n T(r, f)-T(r, g) \leq T\left(r, f^{n} g^{(k)}\right)+S(r, g) \leq n T(r, f)+T(r, g) \tag{2.3}
\end{equation*}
$$

Proof. Since f and g are transcendental meromorphic functions, from ValironMohon'ko theorem, see [9, Theorem 2.2.5], and Lemma 2.2(1), then

$$
\begin{aligned}
n T(r, f)=T\left(r, f^{n}\right) & =T\left(r, f^{n} g^{(k)} \frac{1}{g^{(k)}}\right) \leq T\left(r, f^{n} g^{(k)}\right)+T\left(r, \frac{1}{g^{(k)}}\right) \\
& \leq T\left(r, f^{n} g^{(k)}\right)+(k+1) T(r, g)+S(r, g) .
\end{aligned}
$$

Thus, the left-hand side of (2.2) is proved. The right hand-side of (2.2) is trivial. We also can get (2.3) by considering f, g are entire functions.

Using the similar method to the above, we can also obtain the following three lemmas.

Lemma 2.4. If $f, g \in \mathcal{M}^{\prime}$ or \mathcal{E}^{\prime}, then
(2.4) $n T(r, f)-T(r, g) \leq T\left(r, f(z)^{n} g(z+c)\right)+S(r, g) \leq n T(r, f)+T(r, g)$.

Lemma 2.5. If $f, g \in \mathcal{M}^{\prime}$ and $g(z+c)-g(z) \not \equiv 0$, then

$$
\begin{align*}
n T(r, f)-2 T(r, g) & \leq T\left(r, f(z)^{n}(g(z+c)-g(z))\right)+S(r, g) \\
& \leq n T(r, f)+2 T(r, g) . \tag{2.5}
\end{align*}
$$

If $f, g \in \mathcal{E}^{\prime}$ and $g(z+c)-g(z) \not \equiv 0$, then

$$
\begin{align*}
n T(r, f)-T(r, g) & \leq T\left(r, f(z)^{n}(g(z+c)-g(z))\right)+S(r, g) \\
& \leq n T(r, f)+T(r, g) . \tag{2.6}
\end{align*}
$$

Lemma 2.6. If $f, g \in \mathcal{M}^{\prime}$, then

$$
\begin{align*}
n T(r, f)-(k+1) T(r, g) & \leq T\left(r, f(z)^{n} g^{(k)}(z+c)\right)+S(r, g) \\
& \leq n T(r, f)+(k+1) T(r, g) \tag{2.7}
\end{align*}
$$

If $f, g \in \mathcal{E}^{\prime}$, then
(2.8) $n T(r, f)-T(r, g) \leq T\left(r, f(z)^{n} g^{(k)}(z+c)\right)+S(r, g) \leq n T(r, f)+T(r, g)$.

Remark 2.7. The left-hand sides of Lemma 2.3 to Lemma 2.6 are important to get the estimate of n in Theorem 1.1, and the right-hand sides of Lemma 2.3 to Lemma 2.6 are useful when we get the relations among small functions, such as $S\left(r, f^{n} g^{(k)}\right)=S(r, f)+S(r, g)$ from (2.2).

Let p be a positive integer and $a \in \mathbb{C}$. We denote by $N_{p}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ where an m-fold zero is counted m times if $m \leq p$ and p times if $m>p$. Similarly, $N_{p}(r, f)$ denotes the counting function of the poles of f where an m-fold pole is counted m times if $m \leq p$ and p times if $m>p$. The following lemma is given by An and Phuong [1], which is important for the proof of Theorem 1.4.

Lemma 2.8 ([1, Lemma 2]). Let f and g be non-constant meromorphic functions, and let α be a non-zero small function with respect to f and g. If f and g share $\alpha C M$, then precisely one of the following statements hold:
(i) $T(r, f) \leq N_{2}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{g}\right)+N_{2}(r, f)+N_{2}(r, g)+S(r, f)+S(r, g)$, and $T(r, g) \leq N_{2}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{g}\right)+N_{2}(r, f)+N_{2}(r, g)+S(r, f)+$ $S(r, g)$,
(ii) $f \equiv g$,
(iii) $f \cdot g \equiv \alpha^{2}$.

Remark 2.9. Considering the meromorphic functions f and g share a non-zero small function α CM, the readers should also be very carefully since $\frac{f}{\alpha}$ and $\frac{g}{\alpha}$ may not share the value 1 CM . For example, $f=\frac{1}{z}+e^{z}$ and $g(z)=\frac{1}{z}+\frac{e^{z}}{z}$ share $\alpha(z)=\frac{1}{z} \mathrm{CM}$, but $\frac{f}{\alpha}$ and $\frac{g}{\alpha}$ do not share the value 1 . The observation is first given by Schweizer [18]. See more details in [18] and [1].

3. Proofs of Theorems

Proof of Theorem 1.1. Let $\Psi(z):=f(z)^{n} L(g)-a(z)$. Then

$$
\begin{equation*}
n m(r, f(z))=m\left(r, f(z)^{n}\right)=m\left(\frac{\Psi(z)+a(z)}{L(g)}\right) \tag{3.1}
\end{equation*}
$$

$$
\leq m(r, \Psi+a)+m\left(\frac{1}{L(g)}\right)+O(1)
$$

and

$$
\begin{align*}
n N(r, f(z)) & =N\left(r, f(z)^{n}\right)=N\left(\frac{\Psi(z)+a(z)}{L(g)}\right) \\
& \leq N(r, \Psi+a)+N\left(\frac{1}{L(g)}\right)-\bar{N}_{0}(r)-\bar{N}_{1}(r) \tag{3.2}
\end{align*}
$$

where $\bar{N}_{0}(r)$, resp. $\bar{N}_{1}(r)$ are reducing counting functions, stands for the common zeros, resp. poles, of $\Psi+a$ and $L(g)$. Combining (3.1), (3.2) and the first main theorem of Nevanlinna, we obtain

$$
\begin{equation*}
n T(r, f(z)) \leq T(r, \Psi+a)+T\left(r, \frac{1}{L(g)}\right)-\bar{N}_{0}(r)-\bar{N}_{1}(r)+O(1) \tag{3.3}
\end{equation*}
$$

From the expression of Ψ, we have

$$
\begin{equation*}
\bar{N}(r, \Psi+a) \leq \bar{N}(r, f(z))+\bar{N}_{1}(r) \leq T(r, f)+\bar{N}_{1}(r), \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{\Psi+a}\right) \leq \bar{N}\left(r, \frac{1}{f(z)}\right)+\bar{N}_{0}(r) \leq T(r, f)+\bar{N}_{0}(r) \tag{3.5}
\end{equation*}
$$

Using the second main theorem for three small functions, see [8, Theorem 2.5], (3.4) and (3.5), we obtain

$$
\begin{aligned}
T(r, \Psi+a) & \leq \bar{N}(r, \Psi+a)+\bar{N}\left(r, \frac{1}{\Psi+a}\right)+\bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, \Psi) \\
& \leq 2 T(r, f)+\bar{N}_{1}(r)+\bar{N}_{0}(r)+\bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

Combining (3.3) with the above inequality, we can obtain

$$
\begin{equation*}
(n-2) T(r, f) \leq T\left(r, \frac{1}{L(g)}\right)+\bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, f)+S(r, g) \tag{3.6}
\end{equation*}
$$

Case (i). If $L(g)=g^{(k)}(z)$, from Lemma 2.2(1), then we obtain

$$
\begin{equation*}
(n-2) T(r, f)-(k+1) T(r, g) \leq \bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, f)+S(r, g) \tag{3.7}
\end{equation*}
$$

Let $\Phi(z):=g(z)^{n} L(f)-a(z)$. We also can get

$$
\begin{equation*}
(n-2) T(r, g)-(k+1) T(r, f) \leq \bar{N}\left(r, \frac{1}{\Phi}\right)+S(r, f)+S(r, g) \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8), we obtain
(3.9) $(n-k-3)[T(r, f)+T(r, g)] \leq \bar{N}\left(r, \frac{1}{\Phi}\right)+\bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, f)+S(r, g)$.

Thus, at least one of $f(z)^{n} g^{(k)}(z)-a(z)$ and $g(z)^{n} f^{(k)}(z)-a(z)$ have infinitely many zeros if $n \geq k+4$. The following three cases can be proved in a similar way as the above, we will not give the details.

Case (ii). If $L(h)=h(z+c)$, from Lemma 2.2(2), then we get that at least one of $f(z)^{n} g(z+c)-a(z)$ and $g(z)^{n} f(z+c)-a(z)$ have infinitely many zeros when $n \geq 4$.

Case (iii). If $L(h)=h(z+c)-h(z)$, from Lemma 2.2(3), then we get that at least one of $f(z)^{n}[g(z+c)-g(z)]-a(z)$ and $g(z)^{n}[f(z+c)-f(z)]-a(z)$ have infinitely many zeros when $n \geq 5$.

Case (iv). If $L(h)=h^{(k)}(z+c)$, from Lemma 2.2(4), then we get that at least one of $f(z)^{n} g^{(k)}(z+c)-a(z)$ and $g(z)^{n} f^{(k)}(z+c)-a(z)$ have infinitely many zeros when $n \geq k+4$.

The conclusions for entire functions in Theorem 1.1 can be obtained similarly by applying the corresponding inequalities in Lemma 2.2.

Proof of Theorem 1.4. Case (i). Let $F=f(z)^{n} g^{(k)}(z)$ and $G=g(z)^{n} f^{(k)}(z)$. Thus, we have F and G share $a(z)$ CM. From Lemma 2.8(i), Lemma 2.1 and Lemma 2.3, we have

$$
\begin{aligned}
& (n-k-1)[T(r, f)+T(r, g)] \\
\leq & 2 N_{2}\left(r, \frac{1}{f^{n} g^{(k)}}\right)+2 N_{2}\left(r, \frac{1}{g^{n} f^{(k)}}\right) \\
& +2 N_{2}\left(r, f^{n} g^{(k)}\right)+2 N_{2}\left(r, g^{n} f^{(k)}\right)+S(r, f)+S(r, g) \\
\leq & 2\left[2 N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g^{(k)}}\right)+2 N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{f^{(k)}}\right)\right] \\
& +2(2 N(r, f)+2 N(r, g))+2(2 N(r, g)+2 N(r, f))+S(r, f)+S(r, g) \\
\leq & 6 N\left(r, \frac{1}{f}\right)+6 N\left(r, \frac{1}{g}\right)+(2 k+8) N(r, f)+(2 k+8) N(r, g) \\
& +S(r, f)+S(r, g) \\
\leq & (2 k+14)(T(r, f)+T(r, g))+S(r, f)+S(r, g) .
\end{aligned}
$$

Since $n \geq 3 k+16$, Lemma 2.8(i) cannot occur. So (ii), (iii) of Lemma 2.8 happen. Thus, $f(z)^{n} g^{(k)}(z)=g(z)^{n} f^{(k)}(z)$ or $f(z)^{n} g^{(k)}(z) g(z)^{n} f^{(k)}(z)=a(z)^{2}$ follows.

Case (ii). Let $F=f(z)^{n} g(z+c)$ and $G=g(z)^{n} f(z+c)$. Since F and G share $a(z)$ CM, from Lemma 2.8(i) and Lemma 2.4, we have

$$
\begin{aligned}
& (n-1)[T(r, f)+T(r, g)] \\
\leq & 2 N_{2}\left(r, \frac{1}{f^{n} g(z+c)}\right)+2 N_{2}\left(r, \frac{1}{g^{n} f(z+c)}\right) \\
& +2 N_{2}\left(r, f^{n} g(z+c)\right)+2 N_{2}\left(r, g^{n} f(z+c)\right)+S(r, f)+S(r, g)
\end{aligned}
$$

$$
\begin{aligned}
\leq & 2\left[2 N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g(z+c)}\right)+2 N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{f(z+c)}\right)\right] \\
& +2(2 N(r, f)+2 N(r, g))+2(2 N(r, g)+2 N(r, f))+S(r, f)+S(r, g) \\
\leq & 6 N\left(r, \frac{1}{f}\right)+6 N\left(r, \frac{1}{g}\right)+8 N(r, f)+8 N(r, g)+S(r, f)+S(r, g) \\
\leq & 14(T(r, f)+T(r, g))+S(r, f)+S(r, g) .
\end{aligned}
$$

Since $n \geq 16$, the above inequality is impossible. So (ii) and (iii) of Lemma 2.8 happen. Thus, $f(z)^{n} g(z+c)=g(z)^{n} f(z+c)$ or $f(z)^{n} g(z+c) g(z)^{n} f(z+c)=$ $a(z)^{2}$.

Case (iii). Let $F=f(z)^{n}(g(z+c)-g(z))$ and $G=g(z)^{n}(f(z+c)-f(z))$. Since F and G share $a(z)$ CM, from Lemma 2.8(i) and Lemma 2.5, we also can have

$$
(n-2)[T(r, f)+T(r, g)] \leq 16(T(r, f)+T(r, g))+S(r, f)+S(r, g)
$$

which is impossible for $n \geq 19$. Thus, we have $f(z)^{n}(g(z+c)-g(z))=$ $g(z)^{n}(f(z+c)-f(z))$ or $f(z)^{n}(g(z+c)-g(z)) g(z)^{n}(f(z+c)-f(z))=a(z)^{2}$.

Case (iv). Let $F=f(z)^{n} g^{(k)}(z+c)$ and $G=g(z)^{n} f^{(k)}(z+c)$. Thus, F and G share $a(z)$ CM, from Lemma 2.8(i) and Lemma 2.6, we also can have
$(n-k-1)[T(r, f)+T(r, g)] \leq(2 k+14)(T(r, f)+T(r, g))+S(r, f)+S(r, g)$,
which is impossible for $n \geq 3 k+16$. Thus, we have $f(z)^{n} g^{(k)}(z+c)=$ $g(z)^{n} f^{(k)}(z+c)$ or $f(z)^{n} g^{(k)}(z+c) g(z)^{n} f^{(k)}(z+c)=a(z)^{2}$.

Proof of Theorem 1.5. The conclusions can be obtained similarly by applying the method in the proof of Theorem 1.4 and the corresponding inequalities for entire functions in Lemma 2.3-Lemma 2.6. We just give the proof of Case (i). Let $F=f(z)^{n} g^{(k)}(z)$ and $G=g(z)^{n} f^{(k)}(z)$. Thus, we have F and G share $a(z)$ CM. From Lemma 2.8(i), Lemma 2.1 and Lemma 2.3, we have

$$
\begin{aligned}
& (n-1)[T(r, f)+T(r, g)] \\
\leq & 2 N_{2}\left(r, \frac{1}{f^{n} g^{(k)}}\right)+2 N_{2}\left(r, \frac{1}{g^{n} f^{(k)}}\right)+S(r, f)+S(r, g) \\
\leq & 2\left[2 N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g^{(k)}}\right)+2 N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{f^{(k)}}\right)\right]+S(r, f)+S(r, g) \\
\leq & 6 N\left(r, \frac{1}{f}\right)+6 N\left(r, \frac{1}{g}\right)+S(r, f)+S(r, g) \\
\leq & 6(T(r, f)+T(r, g))+S(r, f)+S(r, g) .
\end{aligned}
$$

Thus, Lemma 2.8(i) cannot occur for $n \geq 8$. So (ii), (iii) of Lemma 2.8 happen. Hence, $f(z)^{n} g^{(k)}(z)=g(z)^{n} f^{(k)}(z)$ or $f(z)^{n} g^{(k)}(z) g(z)^{n} f^{(k)}(z)=a(z)^{2}$ follows.

Proof of Corollary 1.6. From Theorem 1.5(i), if $f(z)^{n} g^{\prime}(z)=g(z)^{n} f^{\prime}(z)$, then

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)^{n}}=\frac{g^{\prime}(z)}{g(z)^{n}} \tag{3.10}
\end{equation*}
$$

Integrating the above equation, we have

$$
\begin{equation*}
\left(\frac{1}{f(z)}\right)^{n-1}-\left(\frac{1}{g(z)}\right)^{n-1}=A \tag{3.11}
\end{equation*}
$$

where A is a constant. Since $n \geq 8, A \equiv 0$ follows by a classic result on Fermat type equations (3.11), see Gross [5]. Then, $f(z)^{n-1}=g(z)^{n-1}$, it implies that $f(z)=t g(z)$ and $t^{n-1}=1$.

If $f(z)^{n} g^{\prime}(z) g(z)^{n} f^{\prime}(z)=a^{2}$, from [20, Theorem 3], then $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$ where c, c_{1}, c_{2} are constants and $\left(c_{1} c_{2}\right)^{n+1} c^{2}=a^{2}$.

Proof of Corollary 1.8. From Theorem 1.5(ii), we have

$$
f(z)^{n} g(z+c)=g(z)^{n} f(z+c) \text { or } f(z)^{n} g(z+c) g(z)^{n} f(z+c)=a^{2} .
$$

If $f(z)^{n} g(z+c)=g(z)^{n} f(z+c)$, then $H(z)^{n}=H(z+c)$ by defining $H(z)=\frac{f(z)}{g(z)}$ and $H(z) \in \mathcal{M}^{\prime}$. Thus, we have

$$
n T(r, H(z))=T(r, H(z+c))=T(r, H(z))+S(r, H(z))
$$

which is impossible for $n \geq 8$ except that $H(z)$ is a constant c_{1}, so $c_{1}^{n-1}=1$. If $f(z)^{n} g(z+c) g(z)^{n} f(z+c)=a^{2}$, then we have $M(z)^{n} M(z+c)=a^{2}$ by defining $M(z)=f(z) g(z)$ and $M(z) \in \mathcal{E}^{\prime}$. Thus, we also have

$$
n T(r, M(z))=T(r, M(z+c))=T(r, M(z))+S(r, M(z))
$$

which is impossible for $n \geq 8$ except that $M(z)$ is a constant c_{2}, so $c_{2}^{n+1}=$ a^{2}.

Acknowledgments. The authors would like to thank the reviewer for useful comments and providing the references [1] and [18].

References

[1] T. T. H. An and N. V. Phuong, A lemma about meromorphic functions sharing a small functions, Comput. Methods Funct. Theory. https://doi.org/10.1007/s40315-021-00388-3
[2] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373. https: //doi.org/10.4171/RMI/176
[3] H. H. Chen and M. L. Fang, The value distribution of $f^{n} f^{\prime}$, Sci. China Ser. A 38 (1995), no. 7, 789-798.
[4] J. Clunie, On a result of Hayman, J. London Math. Soc. 42 (1967), 389-392. https: //doi.org/10.1112/jlms/s1-42.1.389
[5] F. Gross, On the equation $f^{n}+g^{n}=1$, Bull. Amer. Math. Soc. 72 (1966), 86-88. https://doi.org/10.1090/S0002-9904-1966-11429-5
[6] R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. https: //doi.org/10.1090/S0002-9947-2014-05949-7
[7] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9-42. https://doi.org/10.2307/1969890
[8] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[9] I. Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, 15, Walter de Gruyter \& Co., Berlin, 1993. https://doi.org/10.1515/ 9783110863147
[10] I. Laine and Z. Latreuch, Zero distribution of some delay-differential polynomials, Bull. Korean Math. Soc. 57 (2020), no. 6, 1541-1565. https://doi.org/10.4134/BKMS. b200051
[11] I. Laine and C.-C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 8, 148-151. http://projecteuclid.org/euclid.pja/ 1201012520
[12] K. Liu, I. Laine, and L. Z. Yang, Complex Delay-Differential Equations, Berlin, Boston: De Gruyter, 2021. https://doi.org/10.1515/9783110560565
[13] K. Liu, X.-L. Liu, and T.-B. Cao, Value distributions and uniqueness of difference polynomials, Adv. Difference Equ. 2011 (2011), Art. ID 234215, 12 pp. https://doi. org/10.1155/2011/234215
[14] X.-L. Liu, K. Liu, and L.-C. Zhou, The zeros of complex differential-difference polynomials, Adv. Difference Equ. 2014 (2014), 157, 11 pp. https://doi.org/10.1186/1687-1847-2014-157
[15] K. Liu and L.-Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (2009), no. 3, 270-278. https://doi.org/10.1007/s00013-009-2895-x
[16] X.-D. Luo and W.-C. Lin, Value sharing results for shifts of meromorphic functions, J. Math. Anal. Appl. 377 (2011), no. 2, 441-449. https://doi.org/10.1016/j.jmaa. 2010.10.055
[17] E. Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), no. 3, 239-259. https: //doi.org/10.1007/BF01182271
[18] A. Schweizer, What is the definition of two meromorphic functions sharing a small function?, arXiv:1705.05048v2.
[19] Q. Y. Wang and Y. S. Ye, Value distribution and uniqueness of the difference polynomials of meromorphic functions, Chinese Ann. Math. Ser. A 35 (2014), no. 6, 675-684.
[20] C.-C. Yang and X.-H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
[21] C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
[22] L. Zalcman, On some problems of Hayman, Bar-Ilan University, 1995.
Yingchun Gao
Department of Mathematics
Nanchang University
Nanchang, Jiangxi, 330031, P. R. China
Email address: gaoyingchun97@163.com
Kai Liu
Department of Mathematics
Nanchang University
Nanchang, Jiangxi, 330031, P. R. China
Email address: liukai418@126.com, liukai@ncu.edu.cn

