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PAIRED HAYMAN CONJECTURE AND UNIQUENESS OF

COMPLEX DELAY-DIFFERENTIAL POLYNOMIALS

Yingchun Gao and Kai Liu

Abstract. In this paper, the paired Hayman conjecture of different types

are considered, namely, the zeros distribution of f(z)nL(g) − a(z) and

g(z)nL(f) − a(z), where L(h) takes the derivatives h(k)(z) or the shift

h(z+c) or the difference h(z+c)−h(z) or the delay-differential h(k)(z+c),

where k is a positive integer, c is a non-zero constant and a(z) is a non-
zero small function with respect to f(z) and g(z). The related uniqueness

problems of complex delay-differential polynomials are also considered.

1. Introduction and main results

We assume that the reader is familiar with the basic notations and fun-
damental results of Nevanlinna theory [8, 21], such as the proximity function
m(r, f), the counting function N(r, f), the characteristic function T (r, f), the
order ρ(f), the hyper-order ρ2(f), and so on. A small function a(z) with respect
to f(z) means T (r, a(z)) = o(T (r, f)) as r →∞ outside a possible exceptional
set of finite logarithmic measure. We say that two meromorphic functions f(z)
and g(z) share a small function a(z) CM, if f(z)− a(z) and g(z)− a(z) admit
the same zeros with the same multiplicities, the abbreviation CM for counting
multiplicities.

In 1959, Hayman published one of his significant papers [7], where the zero
distribution of complex differential polynomials was considered. For example,
[7, Theorem 10] can be stated as follows.

Theorem A. If f(z) is a transcendental entire function and n ≥ 2 is a positive
integer, then f(z)nf ′(z) − a has infinitely many zeros, where a is a non-zero
constant.

Recall that Clunie [4] proved that Theorem A is also true for the case n = 1.
The well-known Hayman conjecture is also presented in [7]:
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Hayman conjecture. If f(z) is a transcendental meromorphic function and
n is a positive integer, then f(z)nf ′(z)− a has infinitely many zeros, where a
is a non-zero constant.

Hayman conjecture has been proved completely. The case of n ≥ 3 is proved
by Hayman [7, Corollary to Theorem 9], by Mues [17] for n = 2 and by Berg-
weiler and Eremenko [2, Theorem 2], Chen and Fang [3] and Zalcman [22] for
n = 1, respectively. Hence, Theorem A can be seen as the start to consider
the zero distribution of complex differential polynomials. In 2007, Laine and
Yang [11, Theorem 2] obtained the zero distribution of complex difference poly-
nomials as follows, which can be viewed as the difference version of Hayman
conjecture.

Theorem B. If f(z) is a transcendental entire function of finite order, c is a
non-zero constant and n ≥ 2, then f(z)nf(z+ c)− a has infinitely many zeros,
where a is a non-zero constant.

Now, some improvements on Theorem B have been obtained, such as the
constant a can be replaced by a non-zero small function a(z) with respect to
f(z), f(z)n can be improved to certain polynomials, see [16, Theorem 1]. Liu
and Yang [15, Theorem 1.4] also considered the zeros of f(z)n[f(z+c)−f(z)]−
p(z), where p(z) is a non-zero polynomial.

For the case that f(z) is a transcendental meromorphic function of hyper-
order less than one in Theorem B, Liu, Liu and Cao [13] proved Theorem B is
also true for n ≥ 6, Wang and Ye [19] proved Theorem B is true for the case
n ≥ 4, and counter-examples of Theorem B of n ≤ 3 can be found in [13], more
details and improvements of difference versions of Hayman conjecture can be
found in Liu, Laine and Yang [12, Chapter 2].

The delay-differential version of Hayman conjecture was first considered by
Liu, Liu and Zhou [14], using the ideas of common zeros and common poles
in Wang and Ye [19], the improvement below and more results can be found
in [12, Chapter 2]. The latest results related to delay-differential versions of
Hayman conjecture can also be found in Laine and Latreuch [10].

Theorem C. Let f(z) be a transcendental meromorphic function of hyper-
order ρ2(f) < 1 and a(z) be a non-zero small function with respect to f(z). If
n ≥ k+ 4, resp. if n ≥ 3 and f(z) is transcendental entire, then f(z)nf (k)(z +
c)− a(z) has infinitely many zeros.

In this paper, we will consider the paired Hayman conjecture of complex
delay-differential polynomials of different types. In fact, we consider the zeros
distribution of f(z)nL(g) − a(z) and g(z)nL(f) − a(z), where L(h) takes the
derivatives h(k)(z)(k ≥ 1) or the shift h(z+ c) or the difference h(z+ c)− h(z)
(when considering this case, we assume that h(z) is not a periodic function
with period c in the paper) or the delay-differential h(k)(z + c)(k ≥ 1), where
c is a non-zero constant and a(z) is a non-zero small function with respect to
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f(z) and g(z). DenoteM for the function class of transcendental meromorphic
functions andM′ for transcendental meromorphic functions of hyper-order less
than one. Denote E for the function class of transcendental entire functions
and E ′ for transcendental entire functions of hyper-order less than one.

Theorem 1.1. If one of the following conditions is satisfied:

(i) L(h) = h(k)(z), n ≥ k + 4 and h ∈M or n ≥ 3 and h ∈ E ;
(ii) L(h) = h(z + c), n ≥ 4 and h ∈M′ or n ≥ 3 and h ∈ E ′;
(iii) L(h) = h(z + c)− h(z), n ≥ 5 and h ∈M′ or n ≥ 3 and h ∈ E ′;
(iv) L(h) = h(k)(z + c), n ≥ k + 4 and h ∈M′ or n ≥ 3 and h ∈ E ′,

then at least one of f(z)nL(g)− a(z) and g(z)nL(f)− a(z) has infinitely many
zeros, where a(z) is a non-zero small function with respect to f(z) and g(z).

Obviously, if f ≡ g, then Theorem 1.1 may reduce to Hayman conjecture of
different types. We proceed to give some observations on the case of transcen-
dental entire functions f(z), g(z) and a(z) ≡ 0. If f(z)ng(k)(z) and g(z)nf (k)(z)
have finitely many zeros, then the functions f(z), f (k)(z), g(z), g(k)(z) must
have finitely many zeros. If k ≥ 2, then f(z) = P1(z)eQ1(z) and g(z) =
P2(z)eQ2(z), where Pi(z), Qi(z), (i = 1, 2) are polynomials by [8, Theorem
3.8]. In particular, if f(z)ng(k)(z) and g(z)nf (k)(z) (k ≥ 2) have no zeros, then
f(z) = eA1z+B1 and g(z) = eA2z+B2 , where A1, A2 are non-zero constants,
see [8, Theorem 3.8]. If k = 1, we can take f(z) = eh1(z) and g(z) = eh2(z)

where h′i(z)(i = 1, 2) are entire functions without zeros. The same discussions
can be applied to the case that f(z)ng(k)(z + c) and g(z)nf (k)(z + c) have
finitely many zeros. If f(z)ng(z + c) and g(z)nf(z + c) have finitely many ze-
ros, then f(z) and g(z) must have finitely many zeros. If f(z)n(g(z+ c)−g(z))
and g(z)n(f(z + c) − f(z)) have finitely many zeros, then the functions f(z),
f(z+c)−f(z), g(z) and g(z+c)−g(z) must have finitely many zeros. Further-
more, assume that f, g ∈ E ′, we can obtain f(z) = eA1z+B1 and g(z) = eA2z+B2 ,
where A1, A2 are non-zero constants. From Hadamard factorization theorem,
we can assume that f(z) = P (z)eH(z), where P (z) is a polynomial and H(z) is
an entire function with ρ(H) < 1, we then assume f(z+ c)− f(z) = T (z)eS(z),
where T (z) is a polynomial and S(z) is an entire function with ρ(S) < 1. Thus,

P (z + c)eH(z+c) − P (z)eH(z) = T (z)eS(z).

Rewrite the above equation as follows:

P (z + c)

T (z)
eH(z+c)−S(z) − P (z)

T (z)
eH(z)−S(z) = 1.

Using the second main theorem of Nevanlinna, we see H(z+ c)−S(z) must be
a constant, and we also have H(z)−S(z) must be a constant. Thus, H(z+c)−
H(z) is also a constant, and it implies that ρ(H) ≥ 1 if H(z) is transcendental,
which is a contradiction. Thus H(z) is a linear polynomial. It is also an
interesting problem to obtain the forms of f, g such that f(z)nL(g)− a(z) and
g(z)nL(f)− a(z) have both finitely many zeros, where a(z) is a non-zero small
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function with respect to f(z), g(z) and n does not satisfy the conditions in
Theorem 1.1.

Remark 1.2. If n = 1, then Theorem 1.1 is not true. For example, take f(z) =
ez, g(z) = e−z and a(z)( 6≡ 0, 1,−1) is a polynomial in Case (i), take f(z) =
1 + ez and g(z) = −1 − ez and ec = −1 and a(z) = −1 in Case (ii), take
f(z) = z + ez, g(z) = −z + ez, ec = 1 and a(z) = −zc in Case (iii), take
f(z) = ez, g(z) = e−z, ec = −1 and a(z)( 6≡ 0, 1,−1) is a polynomial in Case
(iv).

Remark 1.3. The condition of hyper-order less than one cannot be deleted in
Cases (ii), (iii), (iv). For example, take f(z) = ee

z

and g(z) = e−e
z

, where
ec = n and a(z) is a non-constant polynomial in Case (ii), a(z) ≡ 1 in (iii),
a(z) is a polynomial of ez for different k in (iv).

In the following, we will consider the uniqueness problem on complex delay-
differential polynomials sharing common small functions or common values.
Yang and Hua [20] have considered the uniqueness problems on f(z)nf ′(z) and
g(z)ng′(z) share one non-zero constant a CM as follows.

Theorem D. Let f(z) and g(z) be two non-constant meromorphic (entire)
functions, n ≥ 11(n ≥ 7) be an integer. If f(z)nf ′(z) and g(z)ng′(z) share the
value a CM, then either f(z) = tg(z), where tn+1 = 1 or f(z) = c1e

−cz and
g(z) = c2e

cz, where c, c1and c2 are constants and (c1c2)n+1c2 = −a2.

Combining Theorem 1.1 and Theorem D, it evokes us to consider the unique-
ness problems provided that f(z)nL(g) and g(z)nL(f) share a non-zero small
function a(z) CM, where a(z) is a small function with respect to f(z) and g(z).
For the case of meromorphic functions f(z), g(z), we obtain:

Theorem 1.4. Let f and g be transcendental meromorphic functions. If
f(z)nL(g) and g(z)nL(f) share a non-zero small function a(z) CM, and one
of the following conditions is satisfied

(i) L(h) = h(k)(z), n ≥ 3k + 16 and f, g ∈M;
(ii) L(h) = h(z + c), n ≥ 16 and f, g ∈M′;
(iii) L(h) = h(z + c)− h(z), n ≥ 19 and f, g ∈M′;
(iv) L(h) = h(k)(z + c), n ≥ 3k + 16 and f, g ∈M′,

then f(z)nL(g) = g(z)nL(f) or f(z)nL(g)g(z)nL(f) = a(z)2.

For the case of entire functions f(z) and g(z), we obtain:

Theorem 1.5. Let f and g be transcendental entire functions. If f(z)nL(g)
and g(z)nL(f) share a non-zero small function a(z) CM, and one of the fol-
lowing conditions is satisfied

(i) L(h) = h(k)(z), n ≥ 8 and f, g ∈ E ;
(ii) L(h) = h(z + c), n ≥ 8 and f, g ∈ E ′;

(iii) L(h) = h(z + c)− h(z), n ≥ 8 and f, g ∈ E ′;
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(iv) L(h) = h(k)(z + c), n ≥ 8 and f, g ∈ E ′,
then f(z)nL(g) = g(z)nL(f) or f(z)nL(g)g(z)nL(f) = a(z)2.

Corollary 1.6. Let f and g be transcendental entire functions and n ≥ 8. If
f(z)ng′(z) and g(z)nf ′(z) share a non-zero constant a CM, then f(z) = tg(z)
and tn−1 = 1 or f(z) = c1e

cz and g(z) = c2e
−cz where c, c1and c2 are constants

and (c1c2)n+1c2 = a2.

Remark 1.7. If n = 1, then Corollary 1.6 is not true. For example f(z) =
ez + e−z and g(z) = 2ez + 2e−z, then f(z)g′(z) and g(z)f ′(z) share any non-
zero value a CM. If n = 2, then Corollary 1.6 is also not true. For example
f(z) = ez + 1 and g(z) = e−z − 1, then f(z)2g′(z) and g(z)2f ′(z) share the
value 2 CM.

Corollary 1.8. Let f and g be transcendental entire functions with hyper order
less than one and n ≥ 8. If f(z)ng(z+ c) and g(z)nf(z+ c) share one non-zero
constant a CM, then f(z) = c1g(z) where cn−11 = 1 or f(z)g(z) = c2 where
cn+1
2 = a2.

Remark 1.9. If n = 1, then Corollary 1.8 is not true. For example f(z) = 1+ez

and g(z) = e−z − 1, ec = −1, then f(z)g(z+ c) and g(z)f(z+ c) share −2 CM.

For further studying, we raise the following question.

Question 1. Can we reduce n ≥ 3 to n ≥ 2 in Theorem 1.1 for entire functions
f, g in E or E ′? And what is the sharp value n in Theorem 1.1 for meromorphic
functions f, g in M or M′?

Question 2. How to describe the relationship between f and g from the
equations f(z)nL(g) = g(z)nL(f) and f(z)nL(g)g(z)nL(f) = a(z)2, where
L(h) is defined in Theorem 1.4 and a(z) is a small function with respect to f
and g?

2. Lemmas

Related to the estimate on the zeros of derivatives of meromorphic functions,
one basic result is stated as follows, see [21, Theorem 1.14].

Lemma 2.1. Let f(z) be a non-constant meromoprhic function and k be a
positive integer. Then

(2.1) N

(
r,

1

f (k)(z)

)
≤ N

(
r,

1

f(z)

)
+ kN(r, f(z)) + S(r, f(z)).

The characteristic function of L(h) is important to estimate the value n in
our results, when L(h) takes the derivatives h(k)(z) or the shift h(z+ c) or the
difference h(z + c) − h(z) or the delay-differential h(k)(z + c), we summarize
the results in the following lemma.
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Lemma 2.2. (1) T
(
r, 1
h(k)(z)

)
≤ (k+ 1)T (r, h(z)) +S(r, h(z)), where h ∈

M, and T
(
r, 1
h(k)(z)

)
≤ T (r, h(z)) + S(r, h(z)), where h ∈ E.

(2) T
(
r, 1
h(z+c)

)
≤ T (r, h(z)) + S(r, h(z)), where h ∈M′.

(3) T
(
r, 1
h(z+c)−h(z)

)
≤ 2T (r, h(z)) + S(r, h(z)), where h ∈M′, and

T

(
r,

1

h(z + c)− h(z)

)
≤ T (r, h(z)) + S(r, h(z)),

where h ∈ E ′.
(4) T

(
r, 1
h(k)(z+c)

)
≤ (k + 1)T (r, h(z)) + S(r, h(z)), where h ∈M′, and

T

(
r,

1

h(k)(z + c)

)
≤ T (r, h(z)) + S(r, h(z)),

where h ∈ E ′.

Proof. The Case (1) is obvious. The Cases (2) and (3) are obtained by [6,
Lemma 8.3] and the first main theorem of Nevanlinna. The Case (4) also can
be obtained by Case (1) and [6, Lemma 8.3]. �

Lemma 2.3. If f, g ∈M, then

(2.2)
nT (r, f)− (k + 1)T (r, g) ≤ T (r, fng(k)) + S(r, g)

≤ nT (r, f) + (k + 1)T (r, g).

If f, g ∈ E, then

(2.3) nT (r, f)− T (r, g) ≤ T (r, fng(k)) + S(r, g) ≤ nT (r, f) + T (r, g).

Proof. Since f and g are transcendental meromorphic functions, from Valiron-
Mohon’ko theorem, see [9, Theorem 2.2.5], and Lemma 2.2(1), then

nT (r, f) = T (r, fn) = T

(
r, fng(k)

1

g(k)

)
≤ T (r, fng(k)) + T

(
r,

1

g(k)

)
≤ T (r, fng(k)) + (k + 1)T (r, g) + S(r, g).

Thus, the left-hand side of (2.2) is proved. The right hand-side of (2.2) is
trivial. We also can get (2.3) by considering f, g are entire functions. �

Using the similar method to the above, we can also obtain the following
three lemmas.

Lemma 2.4. If f, g ∈M′ or E ′, then

(2.4) nT (r, f)− T (r, g) ≤ T (r, f(z)ng(z + c)) + S(r, g) ≤ nT (r, f) + T (r, g).

Lemma 2.5. If f, g ∈M′ and g(z + c)− g(z) 6≡ 0, then

(2.5)
nT (r, f)− 2T (r, g) ≤ T (r, f(z)n(g(z + c)− g(z))) + S(r, g)

≤ nT (r, f) + 2T (r, g).
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If f, g ∈ E ′ and g(z + c)− g(z) 6≡ 0, then

(2.6)
nT (r, f)− T (r, g) ≤ T (r, f(z)n(g(z + c)− g(z))) + S(r, g)

≤ nT (r, f) + T (r, g).

Lemma 2.6. If f, g ∈M′, then

(2.7)
nT (r, f)− (k + 1)T (r, g) ≤ T (r, f(z)ng(k)(z + c)) + S(r, g)

≤ nT (r, f) + (k + 1)T (r, g).

If f, g ∈ E ′, then

(2.8) nT (r, f)−T (r, g) ≤ T (r, f(z)ng(k)(z+ c)) +S(r, g) ≤ nT (r, f) +T (r, g).

Remark 2.7. The left-hand sides of Lemma 2.3 to Lemma 2.6 are important
to get the estimate of n in Theorem 1.1, and the right-hand sides of Lemma
2.3 to Lemma 2.6 are useful when we get the relations among small functions,
such as S(r, fng(k)) = S(r, f) + S(r, g) from (2.2).

Let p be a positive integer and a ∈ C. We denote by Np(r,
1

f−a ) the counting

function of the zeros of f −a where an m-fold zero is counted m times if m ≤ p
and p times if m > p. Similarly, Np(r, f) denotes the counting function of the
poles of f where an m-fold pole is counted m times if m ≤ p and p times if
m > p. The following lemma is given by An and Phuong [1], which is important
for the proof of Theorem 1.4.

Lemma 2.8 ([1, Lemma 2]). Let f and g be non-constant meromorphic func-
tions, and let α be a non-zero small function with respect to f and g. If f and
g share α CM, then precisely one of the following statements hold:

(i) T (r, f) ≤ N2

(
r, 1f

)
+N2

(
r, 1g

)
+N2(r, f)+N2(r, g)+S(r, f)+S(r, g),

and T (r, g) ≤ N2

(
r, 1f

)
+ N2

(
r, 1g

)
+ N2(r, f) + N2(r, g) + S(r, f) +

S(r, g),
(ii) f ≡ g,
(iii) f · g ≡ α2.

Remark 2.9. Considering the meromorphic functions f and g share a non-zero
small function α CM, the readers should also be very carefully since f

α and g
α

may not share the value 1 CM. For example, f = 1
z + ez and g(z) = 1

z + ez

z

share α(z) = 1
z CM, but f

α and g
α do not share the value 1. The observation is

first given by Schweizer [18]. See more details in [18] and [1].

3. Proofs of Theorems

Proof of Theorem 1.1. Let Ψ(z) := f(z)nL(g)− a(z). Then

nm(r, f(z)) = m(r, f(z)n) = m

(
Ψ(z) + a(z)

L(g)

)
(3.1)
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≤ m(r,Ψ + a) +m

(
1

L(g)

)
+O(1),

and

nN(r, f(z)) = N(r, f(z)n) = N

(
Ψ(z) + a(z)

L(g)

)
≤ N(r,Ψ + a) +N

(
1

L(g)

)
−N0(r)−N1(r),(3.2)

where N0(r), resp. N1(r) are reducing counting functions, stands for the com-
mon zeros, resp. poles, of Ψ + a and L(g). Combining (3.1), (3.2) and the first
main theorem of Nevanlinna, we obtain

(3.3) nT (r, f(z)) ≤ T (r,Ψ + a) + T

(
r,

1

L(g)

)
−N0(r)−N1(r) +O(1).

From the expression of Ψ, we have

(3.4) N(r,Ψ + a) ≤ N(r, f(z)) +N1(r) ≤ T (r, f) +N1(r),

and

(3.5) N

(
r,

1

Ψ + a

)
≤ N

(
r,

1

f(z)

)
+N0(r) ≤ T (r, f) +N0(r).

Using the second main theorem for three small functions, see [8, Theorem
2.5], (3.4) and (3.5), we obtain

T (r,Ψ + a) ≤ N(r,Ψ + a) +N

(
r,

1

Ψ + a

)
+N

(
r,

1

Ψ

)
+ S(r,Ψ)

≤ 2T (r, f) +N1(r) +N0(r) +N

(
r,

1

Ψ

)
+ S(r, f) + S(r, g).

Combining (3.3) with the above inequality, we can obtain

(3.6) (n− 2)T (r, f) ≤ T
(
r,

1

L(g)

)
+N

(
r,

1

Ψ

)
+ S(r, f) + S(r, g).

Case (i). If L(g) = g(k)(z), from Lemma 2.2(1), then we obtain

(3.7) (n− 2)T (r, f)− (k + 1)T (r, g) ≤ N
(
r,

1

Ψ

)
+ S(r, f) + S(r, g).

Let Φ(z) := g(z)nL(f)− a(z). We also can get

(3.8) (n− 2)T (r, g)− (k + 1)T (r, f) ≤ N
(
r,

1

Φ

)
+ S(r, f) + S(r, g).

From (3.7) and (3.8), we obtain

(3.9) (n−k−3)[T (r, f)+T (r, g)] ≤ N
(
r,

1

Φ

)
+N

(
r,

1

Ψ

)
+S(r, f)+S(r, g).
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Thus, at least one of f(z)ng(k)(z)−a(z) and g(z)nf (k)(z)−a(z) have infinitely
many zeros if n ≥ k + 4. The following three cases can be proved in a similar
way as the above, we will not give the details.

Case (ii). If L(h) = h(z + c), from Lemma 2.2(2), then we get that at least
one of f(z)ng(z+ c)− a(z) and g(z)nf(z+ c)− a(z) have infinitely many zeros
when n ≥ 4.

Case (iii). If L(h) = h(z + c)− h(z), from Lemma 2.2(3), then we get that
at least one of f(z)n[g(z + c) − g(z)] − a(z) and g(z)n[f(z + c) − f(z)] − a(z)
have infinitely many zeros when n ≥ 5.

Case (iv). If L(h) = h(k)(z + c), from Lemma 2.2(4), then we get that at
least one of f(z)ng(k)(z + c)− a(z) and g(z)nf (k)(z + c)− a(z) have infinitely
many zeros when n ≥ k + 4.

The conclusions for entire functions in Theorem 1.1 can be obtained similarly
by applying the corresponding inequalities in Lemma 2.2. �

Proof of Theorem 1.4. Case (i). Let F = f(z)ng(k)(z) and G = g(z)nf (k)(z).
Thus, we have F and G share a(z) CM. From Lemma 2.8(i), Lemma 2.1 and
Lemma 2.3, we have

(n− k − 1)[T (r, f) + T (r, g)]

≤ 2N2

(
r,

1

fng(k)

)
+ 2N2

(
r,

1

gnf (k)

)
+ 2N2

(
r, fng(k)

)
+ 2N2

(
r, gnf (k)

)
+ S(r, f) + S(r, g)

≤ 2

[
2N

(
r,

1

f

)
+N

(
r,

1

g(k)

)
+ 2N

(
r,

1

g

)
+N

(
r,

1

f (k)

)]
+ 2(2N(r, f) + 2N(r, g)) + 2(2N(r, g) + 2N(r, f)) + S(r, f) + S(r, g)

≤ 6N

(
r,

1

f

)
+ 6N

(
r,

1

g

)
+ (2k + 8)N(r, f) + (2k + 8)N(r, g)

+ S(r, f) + S(r, g)

≤ (2k + 14)(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

Since n ≥ 3k+ 16, Lemma 2.8(i) cannot occur. So (ii), (iii) of Lemma 2.8 hap-
pen. Thus, f(z)ng(k)(z) = g(z)nf (k)(z) or f(z)ng(k)(z)g(z)nf (k)(z) = a(z)2

follows.
Case (ii). Let F = f(z)ng(z + c) and G = g(z)nf(z + c). Since F and G

share a(z) CM, from Lemma 2.8(i) and Lemma 2.4, we have

(n− 1)[T (r, f) + T (r, g)]

≤ 2N2

(
r,

1

fng(z + c)

)
+ 2N2

(
r,

1

gnf(z + c)

)
+ 2N2 (r, fng(z + c)) + 2N2 (r, gnf(z + c)) + S(r, f) + S(r, g)
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≤ 2

[
2N

(
r,

1

f

)
+N

(
r,

1

g(z + c)

)
+ 2N

(
r,

1

g

)
+N

(
r,

1

f(z + c)

)]
+ 2(2N(r, f) + 2N(r, g)) + 2(2N(r, g) + 2N(r, f)) + S(r, f) + S(r, g)

≤ 6N

(
r,

1

f

)
+ 6N

(
r,

1

g

)
+ 8N(r, f) + 8N(r, g) + S(r, f) + S(r, g)

≤ 14(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

Since n ≥ 16, the above inequality is impossible. So (ii) and (iii) of Lemma 2.8
happen. Thus, f(z)ng(z + c) = g(z)nf(z + c) or f(z)ng(z + c)g(z)nf(z + c) =
a(z)2.

Case (iii). Let F = f(z)n(g(z + c)− g(z)) and G = g(z)n(f(z + c)− f(z)).
Since F and G share a(z) CM, from Lemma 2.8(i) and Lemma 2.5, we also can
have

(n− 2)[T (r, f) + T (r, g)] ≤ 16(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which is impossible for n ≥ 19. Thus, we have f(z)n(g(z + c) − g(z)) =
g(z)n(f(z+ c)− f(z)) or f(z)n(g(z+ c)− g(z))g(z)n(f(z+ c)− f(z)) = a(z)2.

Case (iv). Let F = f(z)ng(k)(z+ c) and G = g(z)nf (k)(z+ c). Thus, F and
G share a(z) CM, from Lemma 2.8(i) and Lemma 2.6, we also can have

(n− k − 1)[T (r, f) + T (r, g)] ≤ (2k + 14)(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which is impossible for n ≥ 3k + 16. Thus, we have f(z)ng(k)(z + c) =
g(z)nf (k)(z + c) or f(z)ng(k)(z + c)g(z)nf (k)(z + c) = a(z)2. �

Proof of Theorem 1.5. The conclusions can be obtained similarly by applying
the method in the proof of Theorem 1.4 and the corresponding inequalities for
entire functions in Lemma 2.3–Lemma 2.6. We just give the proof of Case (i).
Let F = f(z)ng(k)(z) and G = g(z)nf (k)(z). Thus, we have F and G share
a(z) CM. From Lemma 2.8(i), Lemma 2.1 and Lemma 2.3, we have

(n− 1)[T (r, f) + T (r, g)]

≤ 2N2

(
r,

1

fng(k)

)
+ 2N2

(
r,

1

gnf (k)

)
+ S(r, f) + S(r, g)

≤ 2

[
2N

(
r,

1

f

)
+N

(
r,

1

g(k)

)
+ 2N

(
r,

1

g

)
+N

(
r,

1

f (k)

)]
+S(r, f)+S(r, g)

≤ 6N

(
r,

1

f

)
+ 6N

(
r,

1

g

)
+ S(r, f) + S(r, g)

≤ 6(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

Thus, Lemma 2.8(i) cannot occur for n ≥ 8. So (ii), (iii) of Lemma 2.8 hap-
pen. Hence, f(z)ng(k)(z) = g(z)nf (k)(z) or f(z)ng(k)(z)g(z)nf (k)(z) = a(z)2

follows. �
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Proof of Corollary 1.6. From Theorem 1.5(i), if f(z)ng′(z) = g(z)nf ′(z), then

(3.10)
f ′(z)

f(z)n
=

g′(z)

g(z)n
.

Integrating the above equation, we have

(3.11)

(
1

f(z)

)n−1
−
(

1

g(z)

)n−1
= A,

where A is a constant. Since n ≥ 8, A ≡ 0 follows by a classic result on Fermat
type equations (3.11), see Gross [5]. Then, f(z)n−1 = g(z)n−1, it implies that
f(z) = tg(z) and tn−1 = 1.

If f(z)ng′(z)g(z)nf ′(z) = a2, from [20, Theorem 3], then f(z) = c1e
cz and

g(z) = c2e
−cz where c, c1, c2 are constants and (c1c2)n+1c2 = a2. �

Proof of Corollary 1.8. From Theorem 1.5(ii), we have

f(z)ng(z + c) = g(z)nf(z + c) or f(z)ng(z + c)g(z)nf(z + c) = a2.

If f(z)ng(z+c) = g(z)nf(z+c), then H(z)n = H(z+c) by defining H(z) = f(z)
g(z)

and H(z) ∈M′. Thus, we have

nT (r,H(z)) = T (r,H(z + c)) = T (r,H(z)) + S(r,H(z)),

which is impossible for n ≥ 8 except that H(z) is a constant c1, so cn−11 = 1. If
f(z)ng(z+c)g(z)nf(z+c) = a2, then we have M(z)nM(z+c) = a2 by defining
M(z) = f(z)g(z) and M(z) ∈ E ′. Thus, we also have

nT (r,M(z)) = T (r,M(z + c)) = T (r,M(z)) + S(r,M(z)),

which is impossible for n ≥ 8 except that M(z) is a constant c2, so cn+1
2 =

a2. �
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