CONGRUENCES OF L-VALUES FOR CYCLIC EXTENSIONS

Joongul Lee

Abstract

We study the consequences of Gross's conjecture for cyclic extensions of degree l^{2} where l is prime, and deduce that the L-values at $s=0$ satisfy certain congruence relations.

1. Introduction

We first review Gross's conjecture briefly. Let K / k be an abelian extension of global fields with Galois group G. Let S be a finite nonempty set of places of k which contains all archimedean places and all places ramified in K, and let T be a finite non-empty set of places of k which is disjoint from S. We choose T so that $U_{S, T}$, the group of S-units in k which are congruent to $1(\bmod v)$ for all $v \in T$, is a free abelian group of rank $n=|S|-1$.

For a complex character $\chi \in \widehat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$, the associated modified L-function is defined as

$$
L_{S, T}(\chi, s)=\prod_{v \in T}\left(1-\chi\left(g_{v}\right) \boldsymbol{N} v^{1-s}\right) \prod_{v \notin S}\left(1-\chi\left(g_{v}\right) \boldsymbol{N} v^{-s}\right)^{-1},
$$

where $g_{v} \in G$ is the Frobenius element for v. The Stickelberger element $\theta_{G} \in \mathbb{C}[G]$ is the unique element that satisfies

$$
\chi\left(\theta_{G}\right)=L_{S, T}(\chi, 0)
$$

for all $\chi \in \widehat{G}$. In fact, $\theta_{G} \in \mathbb{Z}[G]$ which is a deep theorem of DeligneRibet(cf. [2]).

Let I_{G} be the augmentation ideal of $\mathbb{Z}[G]$, i.e. the kernel of the map from $\mathbb{Z}[G]$ to \mathbb{Z} sending each group element to 1 . Choose an ordered basis

Received September 30, 2010. Accepted December 13, 2010.
2000 Mathematics Subject Classification: 11R42.
Key words and phrases: Stickelberger element, Abelian L-functions, Gross's conjecture, Class numbers.

This work was supported by 2008 Hongik University Research Fund.
$\left\{u_{1}, \ldots, u_{n}\right\}$ of $U_{S, T}$. Pick a place $v_{0} \in S$, and for each $v_{i} \in S \backslash\left\{v_{0}\right\}$, we let $f_{i}: k^{*} \rightarrow G$ denote the homomorphism induced from local reciprocity map for v_{i}. We set

$$
R_{G}:=\operatorname{det}_{1 \leq i, j \leq n}\left(f_{i}\left(u_{j}\right)-1\right) .
$$

Gross has conjectured (cf. [3])

Conjecture 1.

$$
\theta_{G} \equiv m \cdot R_{G} \quad\left(\bmod I_{G}^{n+1}\right) .
$$

Here, the integer m is defined by

$$
m= \pm h_{S} \cdot \frac{\prod_{v \in T}(N v-1)}{\left(U_{S}: U_{S, T}\right)}
$$

where h_{S} is the S-class number of k and U_{S} is the set of S-units. The \pm sign is determined by the (S, T)-version of the analytic class number formula.

Conjecture 1 is known to be true when G is a cyclic group (cf. [1]). The goal of this paper is to understand the meaning of Conjecture 1 in more concrete terms. We consider the case where G is a cyclic group of order l^{2} for a prime number l. Our main result is Theorem 4, which states that there exist certain congruence relation among L-values.

2. Structure of $\mathbb{Z}[G]$

Let l be a prime and G be a cyclic group of order l^{2} with generator σ. We note that

$$
\mathbb{Z}[G] \cong \mathbb{Z}[x] /\left(x^{l^{2}}-1\right),
$$

where σ is identified with x. We have

$$
x^{l^{2}}-1=f_{0}(x) f_{1}(x) f_{2}(x),
$$

where

$$
\begin{aligned}
f_{0}(x) & =x-1 \\
f_{1}(x) & =x^{l-1}+x^{l-2}+\cdots+x+1 \\
f_{2}(x) & =x^{(l-1) l}+x^{(l-2) l}+\cdots+x^{l}+1=f_{1}\left(x^{l}\right) .
\end{aligned}
$$

It is well-known that $f_{i}(x)$ is the l^{i}-th cyclotomic polynomial which is irreducible over \mathbb{Z}.

Choose a primitive l^{2}-th root of unity ζ_{2} in \mathbb{C}, and set $\zeta_{0}=1, \zeta_{1}=\zeta_{2}^{l}$. We have a ring homomorphism

$$
\chi: \mathbb{Z}[x] \longrightarrow \prod_{i=0}^{2} \mathbb{Z}\left[\zeta_{i}\right]
$$

that sends x to $\left(1, \zeta_{1}, \zeta_{2}\right)$. We note that $\operatorname{ker} \chi=\left(x^{l^{2}}-1\right)$, hence it induces an injective ring homomorphism

$$
\chi: \mathbb{Z}[G] \longrightarrow \prod_{i=0}^{2} \mathbb{Z}\left[\zeta_{i}\right]
$$

We also note that each component function

$$
\chi_{i}: \mathbb{Z}[x] \longrightarrow \mathbb{Z}\left[\zeta_{i}\right]
$$

of χ is surjective with kernel $\left(f_{i}(x)\right)$, and it induces a ring homomorphism

$$
\chi_{i}: \mathbb{Z}[G] \longrightarrow \mathbb{Z}\left[\zeta_{i}\right]
$$

Clearly, $I_{G}=\operatorname{ker} \chi_{0}$ is generated by $\sigma-1$. We set $\lambda_{i}=\zeta_{i}-1$ for $i=1,2$, so that $\chi(\sigma-1)=\left(0, \lambda_{1}, \lambda_{2}\right)$. We also set $\eta=\lambda_{1} / \lambda_{2}$.

We now determine $\chi\left(I_{G}^{n}\right)$ where n is a positive integer. Suppose $a \in I_{G}^{n}$. Then

$$
a=b(\sigma-1)^{n}
$$

for some $b \in \mathbb{Z}[G]$. If $\chi(b)=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$, then

$$
\chi(a)=\left(0, \beta_{1} \lambda_{1}^{n}, \beta_{2} \lambda_{2}^{n}\right)
$$

Conversely, if there exists an element $b \in \mathbb{Z}[G]$ with $\chi_{1}(b)=\beta_{1}$ and $\chi_{2}(b)=\beta_{2}$, then the element

$$
\left(0, \beta_{1} \lambda_{1}^{n}, \beta_{2} \lambda_{2}^{n}\right) \in \prod_{i=0}^{2} \mathbb{Z}\left[\zeta_{i}\right]
$$

actually belongs to $\chi\left(I_{G}^{n}\right)$.
To determine whether there exists an element $b \in \mathbb{Z}[G]$ with $\chi_{1}(b)=$ β_{1} and $\chi_{2}(b)=\beta_{2}$ for given $\beta_{1} \in \mathbb{Z}\left[\zeta_{1}\right]$ and $\beta_{2} \in \mathbb{Z}\left[\zeta_{2}\right]$, we have the following proposition which is a generalization of the Chinese remainder theorem.

Proposition 2. Let R be a commutative ring with 1 , and I, J be ideals of R. There exists a short exact sequence of R-modules

$$
0 \rightarrow R /(I \cap J) \rightarrow R / I \times R / J \rightarrow R /(I+J) \rightarrow 0
$$

where the first map sends r to (r, r) and the second sends $\left(r_{1}, r_{2}\right)$ to $r_{1}-r_{2}$.

Proof. We show that if

$$
r_{1} \equiv r_{2} \quad(\bmod I+J)
$$

then there exists an element $r \in R$ such that

$$
\begin{aligned}
r & \equiv r_{1} \quad(\bmod I) \\
r & \equiv r_{2} \quad(\bmod J)
\end{aligned}
$$

Write

$$
r_{1}-r_{2}=i+j
$$

for some $i \in I, j \in J$. Then the element

$$
r=r_{1}-i=r_{2}+j
$$

satisfies the requirement.
We apply Proposition 2 to the case when $R=\mathbb{Z}[x], I=\left(f_{1}(x)\right)$ and $J=\left(f_{2}(x)\right)$. In this case, $R / I=\mathbb{Z}\left[\zeta_{1}\right], R / J=\mathbb{Z}\left[\zeta_{2}\right]$. As $f_{2}\left(\zeta_{1}\right)=l$ and $f_{1}\left(\zeta_{2}\right)=\eta$, we have

$$
R /(I+J)=\mathbb{Z}\left[\zeta_{1}\right] /(l)=\mathbb{Z}\left[\zeta_{2}\right] /(\eta)
$$

We note that for $p(x) \in \mathbb{Z}[x], p\left(\zeta_{1}\right) \in \mathbb{Z}\left[\zeta_{1}\right] /(l)$ is identified with $p\left(\zeta_{2}\right) \in$ $\mathbb{Z}\left[\zeta_{2}\right] /(\eta)$.

Proposition 2 states that for $\beta_{1} \in \mathbb{Z}\left[\zeta_{1}\right]$ and $\beta_{2} \in \mathbb{Z}\left[\zeta_{2}\right]$, there exists an element $b \in \mathbb{Z}[G]$ such that $\chi_{1}(b)=\beta_{1}$ and $\chi_{2}(b)=\beta_{2}$ if and only if

$$
\beta_{1} \quad(\bmod l)=\beta_{2} \quad(\bmod \eta)
$$

holds. Hence the following theorem is proved.
Theorem 3. Suppose $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ is an element of $\prod_{i=0}^{2} \mathbb{Z}\left[\zeta_{i}\right]$, and n is a positive integer. Then $\alpha \in \chi\left(I_{G}^{n}\right)$ if and only if the following conditions hold:

1. $\alpha_{0}=0$,
2. $\lambda_{i}^{n} \mid \alpha_{i}$ for $i=1,2$,
3. $\alpha_{1} / \lambda_{1}^{n}(\bmod l)=\alpha_{2} / \lambda_{2}^{n}(\bmod \eta)$.

Applying Theorem 3 to $\chi\left(\theta_{G}-m \cdot R_{G}\right)$, we obtain the following result:
Theorem 4. Suppose K / k is a cyclic extension of degree l^{2}. We have

1. $\zeta_{S, T}(0)=0$,
2. $\lambda_{1}^{n+1} \mid L_{S, T}\left(\chi_{1}, 0\right)-m \cdot \chi_{1}\left(R_{G}\right)$,
3. $\lambda_{2}^{n+1} \mid L_{S, T}\left(\chi_{2}, 0\right)-m \cdot \chi_{2}\left(R_{G}\right)$.

Furthermore, write

$$
\begin{aligned}
L_{S, T}\left(\chi_{1}, 0\right)-m \cdot \chi_{1}\left(R_{G}\right) & =\beta_{1} \cdot \lambda_{1}^{n+1} \\
L_{S, T}\left(\chi_{2}, 0\right)-m \cdot \chi_{2}\left(R_{G}\right) & =\beta_{2} \cdot \lambda_{2}^{n+1}
\end{aligned}
$$

Then

$$
\beta_{1} \quad(\bmod l)=\beta_{2} \quad(\bmod \eta)
$$

Corollary 5. Under the same hypothesis as Theorem 4, we have

1. $\lambda_{1}^{n} \mid L_{S, T}\left(\chi_{1}, 0\right)$,
2. $\lambda_{2}^{n} \mid L_{S, T}\left(\chi_{2}, 0\right)$,
3. $L_{S, T}\left(\chi_{1}, 0\right) / \lambda_{1}^{n}(\bmod l)=L_{S, T}\left(\chi_{2}, 0\right) / \lambda_{2}^{n}(\bmod \eta)$

Proof. This comes from the weaker version of the conjecture, namely $\theta_{G} \in I_{G}^{n}$.

References

[1] David Burns and Joongul Lee. On the refined class number formula of Gross. J. Number Theory, 107(2):282-286, 2004.
[2] Pierre Deligne and Kenneth A. Ribet. Values of abelian L-functions at negative integers over totally real fields. Invent. Math., 59(3):227-286, 1980.
[3] Benedict H. Gross. On the values of abelian L-functions at $s=0$. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35(1):177-197, 1988.

Department of Mathematics Education, Hongik University,
72-1 Sangsu-dong, Mapo-gu, Seoul, Korea
E-mail: jglee@hongik.ac.kr

