• Title/Summary/Keyword: $L_k$ operator

Search Result 329, Processing Time 0.026 seconds

AN APPLICATION OF FRACTIONAL DERIVATIVE OPERATOR TO A NEW CLASS OF ANALYTIC AND MULTIVALENT FUNCTIONS

  • Lee, S.K.;Joshi, S.B.
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.183-194
    • /
    • 1998
  • Making use of a certain operator of fractional derivative, a new subclass $L_p({\alpha},{\beta},{\gamma},{\lambda})$) of analytic and p-valent functions is introduced in the present paper. Apart from various coefficient bounds, many interesting and useful properties of this class of functions are given, some of these properties involve, for example, linear combinations and modified Hadamard product of several functions belonging to the class introduced here.

  • PDF

SOME WEAK HYPONORMAL CLASSES OF WEIGHTED COMPOSITION OPERATORS

  • Jabbarzadeh, Mohammad R.;Azimi, Mohammad R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.793-803
    • /
    • 2010
  • In this note, we discuss measure theoretic characterizations for weighted composition operators in some operator classes on $L^2(\cal{F})$ such as, p-quasihyponormal, p-paranormal, p-hyponormal and weakly hyponormal. Some examples are then presented to illustrate that weighted composition operators lie between these classes.

ALGEBRAIC SPECTRAL SUBSPACES OF GENERALIZED SCALAR OPERATORS

  • Han, Hyuk
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.617-627
    • /
    • 1994
  • Algebraic spectral subspaces and admissible operators were introduced by K. B. Laursen and M. M. Neumann in 1988 [L88], [N]. These concepts are useful in automatic continuity problems of intertwining linear operators on Banach spaces. In this paper we characterize the algebraic spectral subspaces of generalized scalar operators. From this characterization we show that generalized scalar operators are admissible. Also we show that doubly power bounded operators are generalized scalar. And using the spectral capacity we show that a generalized scalar operator is decomposable. Then we give an example of an operator which is not admissible but decomposable.

  • PDF

On the Ruled Surfaces with L1-Pointwise 1-Type Gauss Map

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.1
    • /
    • pp.133-144
    • /
    • 2017
  • In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map G satisfying ${\Box}G=f(G+C)$ for a constant vector $C{\in}{\mathbb{E}}^3$ and a smooth function f, where ${\Box}$ denotes the Cheng-Yau operator.

AN ERROR ANALYSIS OF THE DISCRETE GALERKIN SCHEME FOR NONLINEAR INTEGRAL EQUATIONS

  • YOUNG-HEE KIM;MAN-SUK SONG
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.423-438
    • /
    • 1994
  • We employ the Galerkin method to solve the nonlinear Urysohn integral equation (1.1) x(t) = f(t) + $∫_{D}$ k(t, s, x(s))ds (t $\in$ D), where D is a bounded domain in $R^{d}$ , the function f and k are known and x is the solution to be determined. We assume that D has a locally Lipschitz boundary ([1, p. 67]). We can rewrite (1.1) in operator notation as x = f + Kx. We consider (1.1) as an operator equation on $L_{\infty$}$(D) and assume that K is defined on the closure $\Omega$ of a bounded open set $\Omega$$L_{\infty}$(D). Throughout our analysis we put the following assumptions on (1.1).(omitted)(1.1).(omitted)

  • PDF

WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS An* OPERATO

  • Hoxha, Ilmi;Braha, Naim Latif
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1089-1104
    • /
    • 2014
  • An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class $A_n^*$. Second, we consider the tensor product for k-quasi class $A_n^*$, giving a necessary and sufficient condition for $T{\otimes}S$ to be a k-quasi class $A_n^*$, when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class $A_n^*$ operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $A_n^*$ operators such that AX = XB, then $A^*X=XB^*$. Finally, we will prove the spectrum continuity of this class of operators.

ANALYTIC OPERATOR-VALUED GENERALIZED FEYNMAN INTEGRALS ON FUNCTION SPACE

  • Chang, Seung Jun;Lee, Il Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • In this paper we use a generalized Brownian motion process to defined an analytic operator-valued generalized Feynman integral. We then obtain explicit formulas for the analytic operatorvalued generalized Feynman integrals for functionals of the form $$F(x)=f\({\int}^T_0{\alpha}_1(t)dx(t),{\cdots},{\int}_0^T{\alpha}_n(t)dx(t)\)$$, where x is a continuous function on [0, T] and {${\alpha}_1,{\cdots},{\alpha}_n$} is an orthonormal set of functions from ($L^2_{a,b}[0,T]$, ${\parallel}{\cdot}{\parallel}_{a,b}$).

REMARK ON A SEGAL-LANGEVIN TYPE STOCHASTIC DIFFERENTIAL EQUATION ON INVARIANT NUCLEAR SPACE OF A Γ-OPERATOR

  • Chae, Hong Chul
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.163-172
    • /
    • 2000
  • Let $\mathcal{S}^{\prime}(\mathbb{R})$ be the dual of the Schwartz spaces $\mathcal{S}(\mathbb{R})$), A be a self-adjoint operator in $L^2(\mathbb{R})$ and ${\Gamma}(A)^*$ be the adjoint operator of ${\Gamma}(A)$ which is the second quantization operator of A. It is proven that under a suitable condition on A there exists a nuclear subspace $\mathcal{S}$ of a fundamental space $\mathcal{S}_A$ of Hida's type on $\mathcal{S}^{\prime}(\mathbb{R})$) such that ${\Gamma}(A)\mathcal{S}{\subset}\mathcal{S}$ and $e^{-t{\Gamma}(A)}\mathcal{S}{\subset}\mathcal{S}$, which enables us to show that a stochastic differential equation: $$dX(t)=dW(t)-{\Gamma}(A)^*X(t)dt$$, arising from the central limit theorem for spatially extended neurons has an unique solution on the dual space $\mathcal{S}^{\prime}$ of $\mathcal{S}$.

  • PDF

Developing a new mutation operator to solve the RC deep beam problems by aid of genetic algorithm

  • Kaya, Mustafa
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.493-500
    • /
    • 2018
  • Due to the fact that the ratio of their height to their openings is very large compared to normal beams, there are difficulties in the design and analysis of deep beams, which differ in behavior. In this study, the optimum horizontal and vertical reinforcement diameters of 5 different beams were determined by using genetic algorithms (GA) due to the openness/height ratio (L/h), loading condition and the presence of spaces in the body. In this study, the effect of different mutation operators and improved double times sensitive mutation (DTM) operator on GA's performance was investigated. In the study following random mutation (RM), boundary mutation (BM), non-uniform random mutation (NRM), Makinen, Periaux and Toivanen (MPT) mutation, power mutation (PM), polynomial mutation (PNM), and developed DTM mutation operators were applied to five deep beam problems were used to determine the minimum reinforcement diameter. The fitness values obtained using developed DTM mutation operator was higher than obtained from existing mutation operators. Moreover; obtained reinforcement weight of the deep beams using the developed DTM mutation operator lower than obtained from the existing mutation operators. As a result of the analyzes, the highest fitness value was obtained from the applied double times sensitive mutation (DTM) operator. In addition, it was found that this study, which was carried out using GAs, contributed to the solution of the problems experienced in the design of deep beams.

UNIVARIATE LEFT FRACTIONAL POLYNOMIAL HIGH ORDER MONOTONE APPROXIMATION

  • Anastassiou, George A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.593-601
    • /
    • 2015
  • Let $f{\in}C^r$ ([-1,1]), $r{\geq}0$ and let $L^*$ be a linear left fractional differential operator such that $L^*$ $(f){\geq}0$ throughout [0, 1]. We can find a sequence of polynomials $Q_n$ of degree ${\leq}n$ such that $L^*$ $(Q_n){\geq}0$ over [0, 1], furthermore f is approximated left fractionally and simulta-neously by $Q_n$ on [-1, 1]. The degree of these restricted approximations is given via inequalities using a higher order modulus of smoothness for $f^{(r)}$.