DOI QR코드

DOI QR Code

On the Ruled Surfaces with L1-Pointwise 1-Type Gauss Map

  • Received : 2014.06.18
  • Accepted : 2014.10.17
  • Published : 2017.03.23

Abstract

In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map G satisfying ${\Box}G=f(G+C)$ for a constant vector $C{\in}{\mathbb{E}}^3$ and a smooth function f, where ${\Box}$ denotes the Cheng-Yau operator.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. L. J. Alias, A. Ferrandez, P. Lucas and M. A. Merono, On the Gauss map of B-scrolls, Tsukuba J. Math., 22(1998), 371-377. https://doi.org/10.21099/tkbjm/1496163588
  2. L. J. Alias and N. Gurbuz, An extension of Takashi theorem for the linearized operators of the highest order mean curvatures, Geom. Dedicata, 121(2006), 113-127.
  3. B. Y. Chen, Total Mean Curvature and Submanifold of Finite Type, World Scientific, 1984.
  4. B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math., 22(1996), 117-337.
  5. B. Y. Chen, M. Choi and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc., 42(2005), 447-455. https://doi.org/10.4134/JKMS.2005.42.3.447
  6. B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Ruled surfaces of finite type., Bull. Austral. Math. Soc., 42(1990), 447-453 https://doi.org/10.1017/S0004972700028616
  7. B. Y. Chen, J. M. Morvan and T. Nore, Energy, tension and finite type maps, Kodai Math. J., 9(1986), 406-418. https://doi.org/10.2996/kmj/1138037268
  8. B. Y. Chen and P. Piccinni, Submanifolds with finite type Gauss Map, Bull. Austral. Math. Soc., 35(1987), 161-186. https://doi.org/10.1017/S0004972700013162
  9. S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature., Math. Ann., 225(1977), 195-204. https://doi.org/10.1007/BF01425237
  10. M. Choi, D. -S. Kim and Y. H. Kim, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc., 46(2009), pp. 215-223. https://doi.org/10.4134/JKMS.2009.46.1.215
  11. M. Choi and Y. H. Kim, Characterization of helicoid as ruled surface with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38(2001), 753-761.
  12. U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space ${\mathbb{E}}^4$ with pointwise 1-type Gauss map, Math. Commun., Math. Commun. 17(2012), 71-81.
  13. W. Greub, Linear Algebra, Springer, New York, 1963.
  14. U-H. Ki, D.-S. Kim, Y. H. Kim and Y. M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math., 13(2009), 317-338. https://doi.org/10.11650/twjm/1500405286
  15. Y. H. Kim and N. C. Turgay, Surfaces in ${\mathbb{E}}^3$ with $L_1$-pointwise 1-type Gauss map, Bull. Korean Math. Soc., 50(2013), 935-949. https://doi.org/10.4134/BKMS.2013.50.3.935
  16. Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys., 34(2000), 191-205. https://doi.org/10.1016/S0393-0440(99)00063-7
  17. Y. H. Kim and D. W. Yoon, Classification of rotation surfaces in pseudo-Euclidean space, J. Korean Math., 41(2004), 379-396. https://doi.org/10.4134/JKMS.2004.41.2.379
  18. Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mount. J. Math., 35(2005), 1555-1581. https://doi.org/10.1216/rmjm/1181069651
  19. M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math., 118(1985), 165-197. https://doi.org/10.2140/pjm.1985.118.165
  20. N. C. Turgay, On the marginally trapped surfaces in 4-dimensional space-times with finite type Gauss map, Gen. Relativ. Gravit., (2014) 46:1621. https://doi.org/10.1007/s10714-013-1621-y
  21. D. W. Yoon, Rotation surfaces with finite type Gauss map in $E^4$, Indian J. Pure. Appl. Math., 32(2001), 1803-1808.