• Title/Summary/Keyword: $L^r$ inequality

Search Result 26, Processing Time 0.019 seconds

A REFINEMENT OF THE CLASSICAL CLIFFORD INEQUALITY

  • Iliev, Hristo
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.565-583
    • /
    • 2007
  • We offer a refinement of the classical Clifford inequality about special linear series on smooth irreducible complex curves. Namely, we prove about curves of genus g and odd gonality at least 5 that for any linear series $g^r_d$ with $d{\leq}g+1$, the inequality $3r{\leq}d$ holds, except in a few sporadic cases. Further, we show that the dimension of the set of curves in the moduli space for which there exists a linear series $g^r_d$ with d<3r for $d{\leq}g+l,\;0{\leq}l{\leq}\frac{g}{2}-3$, is bounded by $2g-1+\frac{1}{3}(g+2l+1)$.

CERTAIN WEIGHTED MEAN INEQUALITY

  • Kim, Namkwon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.279-282
    • /
    • 2014
  • In this paper, we report a new sharp inequality of interpolation type in $\mathbb{R}^n$. This inequality is for controlling weighted average of a function via $L^n$ norm of the gradient of a function together with its' certain exponential norm.

ON AN L-VERSION OF A PEXIDERIZED QUADRATIC FUNCTIONAL INEQUALITY

  • Chung, Jae-Young
    • Honam Mathematical Journal
    • /
    • v.33 no.1
    • /
    • pp.73-84
    • /
    • 2011
  • Let f, g, h, k : $\mathbb{R}^n{\rightarrow}\mathbb{C}$ be locally integrable functions. We deal with the $L^{\infty}$-version of the Hyers-Ulam stability of the quadratic functional inequality and the Pexiderized quadratic functional inequality $${\parallel}f(x + y) + f(x - y) -2f(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ $${\parallel}f(x + y) + g(x - y) -2h(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ based on the concept of linear functionals on the space of smooth functions with compact support.

SOME Lq INEQUALITIES FOR POLYNOMIAL

  • Chanam, Barchand;Reingachan, N.;Devi, Khangembam Babina;Devi, Maisnam Triveni;Krishnadas, Kshetrimayum
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.331-345
    • /
    • 2021
  • Let p(z)be a polynomial of degree n. Then Bernstein's inequality [12,18] is $${\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;n\;{\max_{{\mid}z{\mid}=1}{\mid}(z){\mid}}$$. For q > 0, we denote $${\parallel}p{\parallel}_q=\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}$$, and a well-known fact from analysis [17] gives $${{\lim_{q{\rightarrow}{{\infty}}}}\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}={\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p(z){\mid}$$. Above Bernstein's inequality was extended by Zygmund [19] into Lq norm by proving ║p'║q ≤ n║p║q, q ≥ 1. Let p(z) = a0 + ∑n𝜈=𝜇 a𝜈z𝜈, 1 ≤ 𝜇 ≤ n, be a polynomial of degree n having no zero in |z| < k, k ≥ 1. Then for 0 < r ≤ R ≤ k, Aziz and Zargar [4] proved $${\max\limits_{{\mid}z{\mid}=R}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;{\frac{nR^{{\mu}-1}(R^{\mu}+k^{\mu})^{{\frac{n}{\mu}}-1}}{(r^{\mu}+k^{\mu})^{\frac{n}{\mu}}}\;{\max\limits_{{\mid}z{\mid}=r}}\;{\mid}p(z){\mid}}$$. In this paper, we obtain the Lq version of the above inequality for q > 0. Further, we extend a result of Aziz and Shah [3] into Lq analogue for q > 0. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

LOGARITHMIC COMPOSITION INEQUALITY IN BESOV SPACES

  • Park, Young Ja
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.105-110
    • /
    • 2013
  • A logarithmic composition inequality in Besov spaces is derived which generalizes Vishik's inequality: ${\parallel}f{\circ}g{\parallel}_{B^s_{p,1}}{\leq}(1+{\log}({\parallel}{\nabla}g{\parallel}_{L^{\infty}}{\parallel}{\nabla}g^{-1}{\parallel}_{L^{\infty}})){\parallel}f{\parallel}_{B^s_{p,1}}$, where $g$ is a volume-preserving diffeomorphism on ${\mathbb{R}}^n$.

TURÁN-TYPE Lr-INEQUALITIES FOR POLAR DERIVATIVE OF A POLYNOMIAL

  • Robinson Soraisam;Mayanglambam Singhajit Singh;Barchand Chanam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.731-751
    • /
    • 2023
  • If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any complex number α with |α| ≥ k, and r ≥ 1, Aziz [1] proved $$\left{{\int}_{0}^{2{\pi}}\,{\left|1+k^ne^{i{\theta}}\right|^r}\,d{\theta}\right}^{\frac{1}{r}}\;{\max\limits_{{\mid}z{\mid}=1}}\,{\mid}p^{\prime}(z){\mid}\,{\geq}\,n\,\left{{\int}_{0}^{2{\pi}}\,{\left|p(e^{i{\theta}})\right|^r\,d{\theta}\right}^{\frac{1}{r}}.$$ In this paper, we obtain an improved extension of the above inequality into polar derivative. Further, we also extend an inequality on polar derivative recently proved by Rather et al. [20] into Lr-norm. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

BOUNDEDNESS AND INVERSION PROPERTIES OF CERTAIN CONVOLUTION TRANSFORMS

  • Yakubovich, Semyon-B.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.999-1014
    • /
    • 2003
  • For a fixed function h we deal with a class of convolution transforms $f\;{\rightarrow}\;f\;*\;h$, where $(f\;*\;h)(x)\;=\frac{1}{2x}\;{\int_{{R_{+}}^2}}^{e^1{\frac{1}{2}}(x\frac{u^2+y^2}{uy}+\frac{yu}{x})}\;f(u)h(y)dudy,\;x\;\in\;R_{+}$ as integral operators $L_p(R_{+};xdx)\;\rightarrow\;L_r(R_{+};xdx),\;p,\;r\;{\geq}\;1$. The Young type inequality is proved. Boundedness properties are investigated. Certain examples of these operators are considered and inversion formulas in $L_2(R_{+};xdx)$ are obtained.

CODING THEOREMS ON A GENERALIZED INFORMATION MEASURES.

  • Baig, M.A.K.;Dar, Rayees Ahmad
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.3-8
    • /
    • 2007
  • In this paper a generalized parametric mean length $L(P^{\nu},\;R)$ has been defined and bounds for $L(P^{\nu},\;R)$ are obtained in terms of generalized R-norm information measure.

  • PDF

$L^p$ 공간의 가분성에 관한 연구

  • 김만호
    • The Mathematical Education
    • /
    • v.21 no.3
    • /
    • pp.7-11
    • /
    • 1983
  • A measurable function f defined on a measurable subset A of the real line R is called pth power summable on A if │f│$^{p}$ is integrable on A and the set of all pth power summable functions on A is denoted by L$^{p}$ (A). For each member f in L$^{p}$ (A), we define ∥f∥$_{p}$ =(equation omitted) For real numbers p and q where (equation omitted) and (equation omitted), we discuss the Holder's inequality ∥fg∥$_1$<∥f∥$_{p}$ ∥g∥$_{q}$ , f$\in$L$^{p}$ (A), g$\in$L$^{q}$ (A) and the Minkowski inequality ∥+g∥$_{p}$ <∥f∥$_{p}$ +∥g∥$_{p}$ , f,g$\in$L$^{p}$ (A). In this paper also discuss that L$_{p}$ (A) becomes a metric space with the metric $\rho$ : L$^{p}$ (A) $\times$L$^{p}$ (A) longrightarrow R where $\rho$(f,g)=∥f-g∥$_{p}$ , f,g$\in$L$^{p}$ (A). Then, in this paper prove the Riesz-Fischer theorem, i.e., the space L$^{p}$ (A) is complete and that the space L$^{p}$ (A) is separable.

  • PDF

Degenerate Weakly (k1, k2)-Quasiregular Mappings

  • Gao, Hongya;Tian, Dazeng;Sun, Lanxiang;Chu, Yuming
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.59-68
    • /
    • 2011
  • In this paper, we first give the definition of degenerate weakly ($k_1$, $k_2$-quasiregular mappings by using the technique of exterior power and exterior differential forms, and then, by using Hodge decomposition and Reverse H$\"{o}$lder inequality, we obtain the higher integrability result: for any $q_1$ satisfying 0 < $k_1({n \atop l})^{3/2}n^{l/2}\;{\times}\;2^{n+1}l\;{\times}\;100^{n^2}\;\[2^l(2^{n+3l}+1)\]\;(l-q_1)$ < 1 there exists an integrable exponent $p_1$ = $p_1$(n, l, $k_1$, $k_2$) > l, such that every degenerate weakly ($k_1$, $k_2$)-quasiregular mapping f ${\in}$ $W_{loc}^{1,q_1}$ (${\Omega}$, $R^n$) belongs to $W_{loc}^{1,p_1}$ (${\Omega}$, $R^m$), that is, f is a degenerate ($k_1$, $k_2$)-quasiregular mapping in the usual sense.