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ON AN L∞-VERSION OF A PEXIDERIZED

QUADRATIC FUNCTIONAL INEQUALITY

Jaeyoung Chung

Abstract. Let f, g, h, k : Rn → C be locally integrable functions.
We deal with the L∞-version of the Hyers-Ulam stability of the
quadratic functional inequality and the Pexiderized quadratic func-
tional inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖L∞(Rn) ≤ ε,

‖f(x + y) + g(x− y)− 2h(x)− 2k(y)‖L∞(Rn) ≤ ε,

based on the concept of linear functionals on the space of smooth
functions with compact support.

1. Introduction

When we consider the Hyers–Ulam stability problems(see Hyers[5],
Hyers-Isac-Rassias[6]) whose underlining functions are defined on a mea-
sure space it is more natural to deal with the problems in almost every-
where sense (or equivalently L∞-sense for measurable functions) than
for all sense. Recently, some of such stability problems have been stud-
ied in the sense of Schwartz distributions [2, 3, 4]. However, the author
guesses that the Schwartz theory of distributions would not be inter-
ested for the readers. For the reason, in the present article, making use
of the same methods as in [2, 3, 4] with possible change of terminolo-
gies we consider an L∞-version of the stability of generalized quadratic
functional equation which would be more interested for the readers(see
P. W. Cholewa[1] and F. Skof[7] for classical Hyers-Ulam stability of
quadratic functional equations). Throughout this article, we denote by
L1
loc(Rn) the space of all locally integrable functions f : Rn → C. Let
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f ∈ L1
loc(Rn). Then we consider the inequality∣∣∣∣∫ (f(x+ y) + f(x− y)− 2f(x)− 2f(y)

)
ϕ(x, y)dx dy

∣∣∣∣ ≤ ε‖ϕ‖L1

for all ϕ in the space C∞c (R2n) of all infinitely differentiable functions
with bounded supports, which is equivalent to each of the following
inequalities

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖L∞(R2n) ≤ ε,(1.1)

|f(x+ y) + f(x− y)− 2f(x)− 2f(y)| ≤ ε, a. e. (x, y) ∈ R2n.(1.2)

As a result we first prove that if f ∈ L1
loc(Rn) satisfies the inequality

(1.1), there exists a unique quadratic function
Q(x) =

∑
1≤j≤k≤n ajk xjxk, ajk ∈ C, j, k = 1, . . . , n, such that

(1.3) ‖f(x)−Q(x)‖L∞(Rn) ≤
1

2
ε.

Generalizing the result we also prove the Hyers-Ulam stability of the
Pexider generalization

‖f(x+ y) + g(x− y)− 2h(x)− 2k(y)‖L∞(R2n) ≤ ε(1.4)

of the inequality (1.1), where f, g, h, k ∈ L1
loc(Rn).

2. Stability of quadratic functional equation

The classical stability of the quadratic functional equation was proved
by P. W. Cholewa[1] and F. Skof[7]:

Theorem 2.1. Let f : G → E be a mapping from a group G to a
Banach space E satisfying the inequality

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε

for all x, y ∈ G. Then there exists a unique function q : G → E
satisfying

q(x+ y) + q(x− y)− 2q(x)− 2q(y) = 0

such that

‖f(x)− q(x)‖ ≤ 1

2
ε

for all x ∈ G.
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In this section, generalizing the above result we consider the stability
of quadratic functional inequality (1.1). We denote by ω(x) the function
on Rn,

ω(x) =

{
Ke
− 1

1−|x|2 , |x| < 1

0, |x| ≥ 1,

where

K−1 =

∫
|x|<1

e
− 1

1−|x|2 dx.

It is easy to see that ω(x) an infinitely differentiable function with
support {x : |x| ≤ 1}. We first use the family of functions ωt(x) :=
t−nω(x/t), t > 0. Let f ∈ L1

loc(Rn). Then for each t > 0, (f ∗ ωt)(x) :=∫
f(y)ωt(x− y)dy is a smooth function in Rn and (f ∗ ωt)(x)→ f(x) a.

e. x ∈ Rn as t→ 0+. It will be very useful to employ the n-dimensional
heat kernel

Et(x) = (4πt)−n/2 exp(−|x|2/4t), t > 0.

It can be checked that the convolution (f ∗Et)(x) is defined for some f ∈
L1
loc(Rn) of suitable growth conditions. In particular, it will be proved

that the convolutions are well defined for all f ∈ L1
loc(Rn) satisfying

(1.1). Furthermore the heat kernel Et(x) enjoys the semigroup property

(Et ∗ Es)(x) = Et+s(x),

which will be very useful later.

Lemma 2.2. Let f : Rn → C be a measurable function (both the
real and imaginary parts of f are measurable functions) satisfying the
inequality

|f(x+ y) + f(x− y)− 2f(x)− 2f(y)| ≤ε
for all x, y ∈ Rn. Then there exists a unique quadratic function

(2.1) Q(x) =
∑

1≤j≤k≤n
ajk xjxk, ajk ∈ C, j, k = 1, . . . , n

such that

|f(x)−Q(x)| ≤ ε

2
,

for all x ∈ Rn.

Proof. As we see in the proof of Theorem 2.1, Q(x) is given by

Q(x) = lim
m→∞

4−mf(2mx),(2.2)
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and satisfies the functional equation

Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y) = 0.(2.3)

In view of (2.2), Q(x) is measurable and the solution Q(x) of (2.3) is
given by (2.1). This completes the proof.

Lemma 2.3. Let f : Rn × (0,∞) → C be a continuous function
satisfying the inequality

(2.4) |f(x+ y, t+ s) + f(x− y, t+ s)− 2f(x, t)− 2f(y, s)| ≤ ε
for all x, y ∈ Rn, t, s > 0. Then there exists a unique quadratic function
Q(x) =

∑
1≤j≤k≤n ajk xjxk and a unique complex number c ∈ C such

that

|f(x, t)−Q(x)− ct| ≤ 1

2
ε

for all x ∈ Rn, t > 0.

Proof. Putting x = y = 0 and s = t in (2.4) and dividing the result
by 4 we have

|2−1f(0, 2t)− f(0, t)| ≤ 4−1ε.

By the induction argument we have

(2.5) |2−nf(0, 2nt)− f(0, t)| ≤ ε

2

for all n ∈ N, t > 0. It follows from the inequality (2.5) that a(t) :=
limm→∞ 2−mf(0, 2mt) converges uniformly and is the unique function
satisfying

(2.6) a(t+ s) = a(t) + a(s),

(2.7) |f(0, t)− a(t)| ≤ ε

2

for all t, s > 0. On the other hand, putting y = x and s = t in (2.4),
dividing the result by 4 and using the induction argument we have

(2.8) |f(x, t)− 4−nf(2nx, 2nt)−
n∑

k=1

4−kf(0, 2kt)| ≤ ε

3
.

It follows from (2.6) and (2.7) that

(2.9) |
n∑

k=1

4−kf(0, 2kt)− (1− 2−n)a(t)| ≤ ε

6
.

From (2.8) and (2.9), letting F (x, t) = f(x, t)− a(t) we have

(2.10) |F (x, t)− 4−nF (2nx, 2nt)| ≤ ε

2
.



On an L∞-version of a Pexiderized quadratic functional inequality 77

Now it is easy to see that

F0(x, t) := lim
m→∞

4−mF (2mx, 2mt)

satisfies

(2.11) |F (x, t)− F0(x, t)| ≤
ε

2

and the quadratic–additive functional equation

(2.12) F0(x+ y, t+ s) + F0(x− y, t+ s)− 2F0(x, t)− 2F0(y, s) = 0

for all x, y ∈ Rn, t, s > 0.
Let q(x, t) := F0(x, t) + a(t). Then q(x, t) is a continuous function

satisfying the equation(2.12) and has the form

q(x, t) =
∑

1≤j≤k≤n
ajk xjxk + ct

for some ajk, c ∈ C, 1 ≤ j ≤ k ≤ n. Thus in view of (2.11) we have

|f(x, t)−
∑

1≤j≤k≤n
ajk xjxk − ct| ≤

ε

2
.

This completes the proof.

Theorem 2.4. Let f ∈ L1
loc(Rn) satisfy the inequality (1.1). Then

there exists a unique quadratic function

Q(x) =
∑

1≤j≤k≤n
ajk xjxk

such that

‖f(x)−Q(x)‖L∞(Rn) ≤
ε

2
.

Proof. We first prove that f is of polynomial growth. Multiplying
ϕ(x, y) = ωt(ξ−x)ωs(η− y) in both sides of (1.1), integrating the result
with respect to x and y, and replacing ξ, η by x, y respectively, we have
(2.13)
|(f ∗ωt ∗ωs)(x+y) + (f ∗ωt ∗ωs)(x−y)−2(f ∗ωt)(x)−2(f ∗ωs)(y)| ≤ ε
for all x, y ∈ Rn, t, s > 0. In view of (2.13) it is easy to see that

f0(x) := lim sup
t→0+

(f ∗ ωt)(x)

exists. Letting y = 0 in (2.13) we have

(2.14) |(f ∗ ωt ∗ ωs)(x)− (f ∗ ωt)(x)− (f ∗ ωs)(0)| ≤ ε

2
.
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Fix x ∈ Rn and let t = tn → 0+ so that (f ∗ωtn)(x)→ f(x) in (2.14)
to get

(2.15) |(f ∗ ωs)(x)− f0(x)− (f ∗ ωs)(0)| ≤ ε

2
.

From the inequality (2.13), (2.14), (2.15) and the triangle inequality we
have

|f0(x+ y) + f0(x− y)− 2f0(x)− 2f0(y)| ≤ 5ε

for all x, y ∈ Rn. By Lemma 2.2, there exists a unique function

Q(x) =
∑

1≤j≤k≤n
ajk xjxk, ajk ∈ C, j, k = 1, . . . , n

such that

(2.16) |f0(x)−Q(x)| ≤ 5

2
ε

for all x ∈ Rn.
From (2.15) and (2.16) we have

(2.17) |(f ∗ ωs)(x)−Q(x)− (f ∗ ωs)(0)| ≤ 3ε.

Letting s = sn → 0+ so that (f ∗ ωsn)(0)→ f(0) in (2.17) we have

(2.18) ‖f(x)−Q(x)‖L∞ ≤
7

2
ε.

Thus f is of polynomial growth. Now we employ the n-dimensional
heat kernel Et(x), t > 0. Convolving Et(x)Es(y) in (1.1) and using the
semigroup property

(Et ∗ Es)(x) = Et+s(x)

we obtain the quadratic–additive type functional inequality

(2.19) |f(x+ y, t+ s) + f(x− y, t+ s)− 2f(x, t)− 2f(y, s)| ≤ ε

for x, y ∈ Rn, t, s > 0, where f(x, t) is given by

f(x, t) =

∫
f(y)Et(x− y)dy.

Now using Lemma 2.3, we have

(2.20) |f(x, t)−
∑

1≤j≤k≤n
ajk xjxk − ct| ≤

ε

2
.

Letting t→ 0+ in (2.20) we get the result.
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3. Stability of Pexiderized quadratic functional equation

In this section we prove the Hyers-Ulam stability of (1.4), which is a
Pexider generalization of (1.1).

Lemma 3.1. Let f : Rn → C be measurable function satisfying the
inequality

|f(x+ y)− f(x)− f(y)| ≤ ε
for all x, y ∈ Rn. Then there exists a unique additive function

(3.1) A(x) = a · x, a ∈ Cn

such that

|f(x)−A(x)| ≤ε
for all x ∈ Rn.

Proof. As we see in the proof of the classical Hyers-Ulam stability
theorem of additive functional equation[5, 6], the function A(x) is given
by

A(x) = lim
m→∞

2−mf(2mx),(3.2)

and satisfies the functional equation

A(x+ y)−A(x)−A(y) = 0.(3.3)

In view of (3.2), A(x) is measurable and the solution A(x) of (3.3) has
the form (3.1). This completes the proof.

Lemma 3.2. The inequality (1.4) implies

(3.4) ‖h̃(x+ y) + k̃(x− y)− 2f(x)− 2g(y)‖L∞(R2n) ≤ 2ε

for some h̃, k̃ ∈  L1
loc(Rn).

Proof. Composite in (1.4) the linear mapping L : R2n → R2n defined
by

L(x, y) =

(
x+ y

2
,
x− y

2

)
, x, y ∈ Rn.

Then we have

(3.5)

∣∣∣∣f(x) + g(y)− 2h

(
x+ y

2

)
− 2k

(
x− y

2

)∣∣∣∣ ≤ ε,
for all (x, y) ∈ L−1(Ω), where Ω ⊂ R2n is the set of all (x, y) for which the
inequality (1.4) holds. Since (L−1(Ω))c has measure zero the inequality
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(3.5) holds for a. e. x ∈ Rn. Then the inequality (3.5) can be written in
the form (3.4). This completes the proof.

Lemma 3.3. Let f, g, h, k ∈ L1
loc(Rn) satisfy the inequality (1.4).

Then there exists a polynomial P (x) such that

|f(x)|, |g(x)|, |h(x)|, |k(x)| ≤ |P (x)|, a. e. x ∈ Rn.

Proof. The proof is obtained by the same procedure as that of Lemma
3.4 of [2]. Here we give the sketch of the proof. For a complete proof we
refer the reader to [2]. We denote by

(3.6) f(x, t, s) = (f ∗ ωt ∗ ωs)(x), f(x, t) = (f ∗ ωt)(x).

Multiplying ϕ(x, y) = ωt(ξ−x)ωs(η−y) in both sides of (1.4), integrating
the result with respect to x and y and replacing ξ, η by x, y respectively,
we have

(3.7) |f(x+ y, t, s) + g(x− y, t, s)− 2h(x, t)− 2k(y, s)| ≤ ε
for all x, y ∈ Rn, t, s > 0. Let

fe(x, t, s) =
1

2
(f(x, t, s) + f(−x, t, s)), fe(x, t) =

1

2
(f(x, t) + f(−x, t)).

Then we have

(3.8) |fe(x+ y, t, s) + ge(x− y, t, s)− 2he(x, t)− 2ke(y, s)| ≤ ε.
From (3.7), using limiting processes we can show that there exist

c3, c4 ∈ C such that

|fe(x, t) + ge(x, t)− 2he(x, t)− 2c4| ≤ ε,(3.9)

|fe(y, s) + ge(y, s)− 2ke(y, s)− 2c3| ≤ ε,(3.10)

and hence

(3.11) |he(x, t)− ke(x, t)− c3 + c4| ≤ ε.
Using (3.9), (3.10), (3.11) and the triangle inequality we can show that

|he(x+ y, t, s) + he(x− y, t, s)− 2he(x, t)− 2he(y, s) + 2c3| ≤ 4ε.
(3.12)

Using limiting processes we can prove that there exists a unique qua-
dratic function

Q(x) =
∑

1≤j≤k≤n
ajk xjxk, ajk ∈ C, j, k = 1, . . . , n

and a positive constant M1 such that

(3.13) |he(x, s)−Q(x)− h(0, s)| ≤M1.
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For the odd part of the inequality (3.7) let

fo(x, t, s) =
1

2
(f(x, t, s)− f(−x, t, s)), fo(x, t) =

1

2
(f(x, t)− f(−x, t)).

Then we have

(3.14) |fo(x+ y, t, s) + go(x− y, t, s)− 2ho(x, t)− 2ko(y, s)| ≤ ε.
Putting y = 0, s→ 0+ and convolving ωs(x) in (3.14) we have

(3.15) |fo(x, t, s) + go(x, t, s)− 2ho(x, t, s)| ≤ ε.
Using (3.14), (3.15) and the triangle inequality we can prove that

|ho(x+ y, t, s) + ho(x− y, t, s)− 2ho(x, t)| ≤ 2ε.(3.16)

From (3.16), using limiting processes we can show that there exist a ∈ Cn

and M2 > 0 such that

(3.17) |ho(x, s)− a · x| ≤M2.

It follows from (3.13) and (3.17) that

(3.18) |h(x, s)−Q(x)− a · x− h(0, s)| ≤M1 +M2.

Letting s = sn → 0+ so that limh(0, sn) = lim sups→0 h(0, s) := d in
(3.18) we have

(3.19) |h(x)−Q(x)− a · x− d‖ ≤M1 +M2, a. e. x ∈ Rn,

which implies h(x) has polynomial growth. Changing the role of h and
k we also prove that k has polynomial growth. Finally, it follows from
Lemma 3.2 that f, g are of polynomial growth. This completes the
proof.

Theorem 3.4. Let f, g, h, k ∈ L1
loc(Rn) satisfy the inequality (1.4).

Then f, g, h, k satisfy

‖f(x)−Q(x) + (a+ b) · x+ c1‖L∞(Rn) ≤ 8ε,

‖g(x)−Q(x) + (a− b) · x+ c2‖L∞(Rn) ≤ 8ε,

‖h(x)−Q(x) + a · x+ c3‖L∞(Rn) ≤ 4ε,

‖k(x)−Q(x) + b · x+ c4‖L∞(Rn) ≤ 4ε,

where Q(x) =
∑

1≤j≤k≤n ajk xjxk, a, b ∈ Cn, c1, c2, c3, c4 ∈ C.

Proof. By Lemma 3.3, f, g, h, k are of polynomial growth. Thus we
can use the heat kernel Et(x) instead of ωt(x) in Lemma 3.3. Multiplying
ϕ(x, y) = Et(ξ−x)Es(η−y) in both sides of (1.4), integrating the result
with respect to x and y and replacing ξ by y, η by y we have

(3.20) |f(x+ y, t+ s) + g(x− y, t+ s)− 2h(x, t)− 2k(y, s)| ≤ ε
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for all x, y ∈ Rn, t, s > 0, where

f(x, t) = (f ∗ Et)(x).

From the inequality (3.20) we have

(3.21) |he(x+y, t+s)+he(x−y, t+s)−2he(x, t)−2he(y, s)+2c3| ≤ 4ε.

By Lemma 2.3 there is a unique quadratic formQ(x) =
∑

1≤j≤k≤n ajk xjxk
and a complex number c such that

(3.22) |he(x, t)−Q(x)− ct− c3| ≤ 2ε.

for all x ∈ Rn, t > 0. Also it follows from (3.20) that

(3.23) |ho(x+ y, t+ s)− ho(x, t)− ho(y, s)| ≤ 2ε

for all x, y ∈ Rn, t, s > 0. In view of Lemma 3.1, there exists a ∈
Cn, d1 ∈ C such that

(3.24) |ho(x, t)− a · x− d1t| ≤ 2ε.

Changing the roles of h and k in (3.20) we also have

(3.25) |ke(x, t)−Q∗(x)− c∗t− c4| ≤ 2ε,

(3.26) |ko(x, t)− b · x− d2t| ≤ 2ε

for some quadratic function Q∗ and c∗, c4, d2 ∈ C, b ∈ Cn. As in Lemma
3.4 we have

(3.27) |he(x, t)− ke(x, t)− c3 + c4| ≤ ε.
From (3.22), (3.25), (3.27), using the triangle inequality we have

|Q(x)−Q∗(x) + (c− c∗)t| ≤ 5ε,

and hence Q = Q∗, c = c∗. Thus it follows from (3.22), (3.24), (3.25)
and (3.26) that

|h(x, t)−Q(x)− a · x− (c+ d1)t− c3| ≤ 4ε,(3.28)

|k(x, t)−Q(x)− b · x− (c+ d2)t− c4| ≤ 4ε.(3.29)

Letting t→ 0+ in (3.28) and (3.29) we have

|h(x)−Q(x)− a · x− c3| ≤ 4ε, a. e. x ∈ Rn(3.30)

|k(x)−Q(x)− b · x− c4| ≤ 4ε, a. e. x ∈ Rn.(3.31)

Finally we find the approximations of f and g. In view of Lemma 3.2
we have

|f(x, t)− Q̃(x)− ã · x− d̃1t− c1| ≤ 8ε,(3.32)

|g(x, t)− Q̃(x)− b̃ · x− d̃2t− c2| ≤ 8ε.(3.33)
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for some quadratic function Q̃ and c1, c2, d̃1, d̃2 ∈ C, ã, b̃ ∈ Cn. From

(3.20), we can show that Q̃ = Q and ã = a+b, b̃ = b−a. This completes
the proof.

In particular, if ε = 0 in Theorem 3.4 we have

Corollary 3.5. The solutions f, g, h, k ∈ L1
loc(Rn) of the equation

(3.34) f(x+ y) + g(x− y)− 2h(x)− 2k(y) = 0, a. e. (x, y) ∈ R2n

are of the form

f(x) = Q(x) + (a+ b) · x+ c1,(3.35)

g(x) = Q(x) + (a− b) · x+ c2,(3.36)

h(x) = Q(x) + a · x+ c3,(3.37)

k(x) = Q(x) + b · x+ c4,(3.38)

almost everywhere x ∈ Rn, where Q(x) =
∑

1≤j≤k≤n ajk xjxk, a, b ∈
Cn, c1, c2, c3, c4 ∈ C.
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