• Title/Summary/Keyword: %24HfAlO_3%24

Search Result 9, Processing Time 0.024 seconds

Phase Relationships of Al2O3-Cr2O3-ZrO2-HfO2 System (Al2O3-Cr2O3-ZrO2-HfO2계의 상 (phase)관계에 관한 연구)

  • 장동석;조병곤;오근호;이종근
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 1987
  • The investigation includes phase equilibria of Al2O3-HfO2 Cr2O3-ZrO2, Cr2O3-HfO2, Al2O3-Cr2O3-ZrO2, Al2O3-Cr2O3-HfO2, Al2O3-ZrO2-HfO2, Cr2O3-ZrO2-HfO2, Al2O3-Cr2O3-ZrO2-HfO2. In the systems the solubility near the end members has been studied at 1500$^{\circ}C$ and 1600$^{\circ}C$, respectively. Selective Compositions were investigated in the area of the guarternary system where the phae relation was examined.

  • PDF

Characterization of Sandwiched MIM Capacitors Under DC and AC Stresses: Al2O3-HfO2-Al2O3 Versus SiO2-HfO2-SiO2 (Al2O3-HfO2-Al2O3와 SiO2-HfO2-SiO2 샌드위치 구조 MIM 캐패시터의 DC, AC Stress에 따른 특성 분석)

  • Kwak, Ho-Young;Kwon, Hyuk-Min;Kwon, Sung-Kyu;Jang, Jae-Hyung;Lee, Hwan-Hee;Lee, Song-Jae;Go, Sung-Yong;Lee, Weon-Mook;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.939-943
    • /
    • 2011
  • In this paper, reliability of the two sandwiched MIM capacitors of $Al_2O_3-HfO_2-Al_2O_3$ (AHA) and $SiO_2-HfO_2-SiO_2$ (SHS) with hafnium-based dielectrics was analyzed using two kinds of voltage stress; DC and AC voltage stresses. Two MIM capacitors have high capacitance density (8.1 fF/${\mu}m^2$ and 5.2 fF/${\mu}m^2$) over the entire frequency range and low leakage current density of ~1 nA/$cm^2$ at room temperature and 1 V. The charge trapping in the dielectric shows that the relative variation of capacitance (${\Delta}C/C_0$) increases and the variation of voltage linearity (${\alpha}$/${\alpha}_0$) gradually decreases with stress-time under two types of voltage stress. It is also shown that DC voltage stress induced greater variation of capacitance density and voltage linearity than AC voltage stress.

Comparative Study on Geochemical Characteristics of Stream Sediments and Mylonitic Granites in the Unbong Area (운봉지역 하상퇴적물과 압쇄상화강암류의 지구화학적 특성 비교연구)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Kim, Sung-Won
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.727-738
    • /
    • 2007
  • The present study investigation the geochemical characteristics of the stream sediments in the Unbong area was conducted to enable a understanding the natural background and a prediction the prospects of geochemical disaster as a result of that bed rocks(mylonitic granites, Kim et al., 1992). We systematically collected seventy three stream sediments samples by wet sieving along the primary channels. Major, trace and rare earth element(REE) concentrations, combined with mineralogical characteristics, were determined by XRD, XRF, ICP-AES and NAA analysis methods. Major element concentrations for the stream sediments in the Unbong area were $SiO_2\;36.94{\sim}65.39wt.%,\;Al_2O_3\;10.15{\sim}21.77wt.%,\;Fe_2O_3\;3.17{\sim}10.90wt.%,\;CaO\;0.55{\sim}5.27wt.%,\;MgO\;0.52{\sim}4.94wt.%,\;K_2O\;1.38{\sim}4.54wt.%,\;Na_2O\;0.49{\sim}3.36wt.%,\;TiO_2\;0.39{\sim}1.27wt.%,\;MnO\;0.04{\sim}0.22wt.%,\;P_2O_5\;0.08{\sim}0.54wt.%$. Trace and REE concentrations for the stream sediments were $Cu\;4.8{\sim}134ppm,\;Pb\;24.2{\sim}82.5ppm,\;Sr\;95.9{\sim}739ppm,\;V\;19.9{\sim}124ppm,\;Zr\;52.9{\sim}145ppm,\;Li\;25.2{\sim}3.3ppm,\;Co\;3.87{\sim}50.0ppm,\;Cr\;17.4{\sim}234ppm,\;Hf\;3.93{\sim}25.2ppm,\;Sc\;4.60{\sim}20.6ppm,\;Th\;3.82{\sim}36.9ppm,\;Ce\;45.7{\sim}243ppm,\;Eu\;0.89{\sim}2.69ppm,\;Yb\;1.42{\sim}5.18ppm$. According to the comparison of average major element concentrations, CaO, $Na_2O\;and\;K_2O$ contents are higher in stream sediments than in bed rocks(mylonitic granites, Kim et al., 1992) $Al_2O_3\;and\;SiO_2$ contents show good correlation both stream sediments and bed rocks(mylonitic granites, Kim et al., 1992). Yb and Eu in the stream sediments show a positive correlation with $SiO_2$. In contrast, the stream sediments display a negative correlation.

Petrogeochemistry of Shales in Cretaceous Gyeongsang Supergroup from the Euiseong Basin, Korea (의성분지(義城盆地)에 분포(分布)하는 백악기(白堊紀) 경상누층군(慶尙累層群)의 셰일에 관(關)한 암석지구화학(岩石地球化學))

  • Lee, Hyun Koo;Lee, Chan Hee;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • The shales from the Euiseong area are interbedded along the bedding in Cretaceous Gyeongsang Supergroup, which are composed mainly of quartz, plagioclase, K-feldspar and associated with trace amount of biotite, muscovite, chlorite, pyrite, hematite, carbonate and clay minerals. The ratio of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shales from the Shindong Group are ranged from 9.16 to 24.32 and from 1.70 to 5.97, and the Hayang Group ranged from 2.76 to 8.89 and from 0.42 to 2.74, which are negative correlated between $K_2O/Na_2O$ and $Al_2O_3/Na_2O$ against $SiO_2/Al_2O_3$ respectively. Those are suggested that controlled of mineral compositions in shales due to substitution and migration of elements by sedimentation and diagenesis. These shale formation were deposited in basin of terrestrial environments originated from the igneous rocks, and the REE of these rocks are not influenced with diagenesis and hydrothermal alterations on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.43 to 0.62) and Th/U (1.11 to 10.71). The narrow range in trace and REE element characteristics as Co/Th (0.63 to 1.92), La/Sc (1.98 to 5.90), Sc/Th (0.58 to 1.30), V/Ni (0.90 to 3.25), Cr/V (0.45 to 1.78), Ni/Co (1.88 to 6.67) and Zr/Hf (30.04~60.87) of these shales argues for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (6.90 to 17.02), Th/Yb (4.17 to 13.68) and La/Th (1.98 to 5.90), and their origin is explained by derivation from a mixture of intermediate to acidic igneous rocks.

  • PDF

Geochemical Characteristics of Stream Sediments in the Konyang Area (곤양지역 하상퇴적물에 대한 지구화학적 특성)

  • Park Yaung-Seog;Park Dae-Woo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.329-342
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics for the stream sediments in the Konyang area. So we can estimate the environment contamination and understand geochemical disaster. We collect the stream sediments samples by wet sieving along the primary channels and slowly dry the collected samples in the laboratory and grind to pass a 200mesh using an alumina mortar and pestle for chemical analysis. Mineralogy, major, trace and rare earth elements are determined by XRD, XRE, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological groups of stream sediments, the studied area was grouped into quartz porphyry area, sedimentary rock area, anorthosite area and gneiss area. Contents of major elements for the stream sediments in the Konyang area were $SiO_2\;41.86{\sim}76.74\;wt.%,\;Al_{2}O_{3}\;9.92{\sim}30.00\;wt.%,\;Fe_{2}O_{3}\;2.74{\sim}12.68\;wt.%,\;CaO\;0.22{\sim}3.31\;wt.%,\;MgO\;0.34{\sim}3.97\;wt.%,\;K_{2}O\;0.75{\sim}0.93\;wt.%,\;Na_{2}O\;0.25{\sim}1.92\;wt.%,\;TiO_{2}\;0.40{\sim}3.00\;wt.%,\;MnO\;0.03{\sim}0.21\;wt.%,\;P_{2}O_{5}\;0.05{\sim}0.38\;wt.%$. The contents of trace and rare earth elements for the stream sediments were $Cu\;7{\sim}102\;ppm,\;Pb\;15{\sim}47\;ppm,\;Sr\;48{\sim}513\;ppm,\;V\;29{\sim}129\;ppm,\;Zr\;31{\sim}217\;ppm,\;Li\;14{\sim}94\;ppm,\;Co\;5.6{\sim}32.1\;ppm,\;Cr\;23{\sim}259\;ppm,\;Cs\;1.7{\sim}8.7\;ppm,\;Hf\;2.1{\sim}109.0\;ppm,\;Rb\;34{\sim}247\;ppm,\;Sc\;4.5{\sim}21.9\;ppm,\;Zn\;24{\sim}609\;ppm,\;Sb\;0.8{\sim}2.6\;ppm,\;Th\;3{\sim}213\;ppm,\;Ce\;22{\sim}1000\;ppm,\;Eu\;0.7{\sim}5.3\;ppm,\;Yb\;0.6{\sim}6.4\;ppm$. Generally, the contents of $Al_{2}O_{3}\;and\;SiO_2$ had a good relationships with each other in rocks but it had a bad relationships in stream sediments for this study area. The contents of $Fe_{2}O_3$, CaO, MnO and $P_{2}O_{5}$ had a good relationships with major and minor elements in stream sediments of this study area. The contents of Co and V in the stream sediments had a good relationships with other toxic elements.

Occurrence and Chemical Composition of Dolomite and Chlorite from Xiquegou Pb-Zn Deposit, China (중국 Xiquegou 연-아연 광상의 돌로마이트와 녹니석 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.125-140
    • /
    • 2022
  • The Xiquegou Pb-Zn deposit is located at the Qingchengzi orefield which is one of the largest Pb-Zn mineralized zone in the northeast of China. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Xiquegou deposit which is a Triassic magma-hydrothermal type deposit occurs as vein ore filled fractures along fault zone in unit 3 (dolomitic marble and schist) of Dashiqiao formation of the Paleoproterozoic Liaohe group. Xiquegou Pb-Zn deposit consists of quartz, apatite, calcite, pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, stannite, galena, tetrahedrite, electrum, argentite, native silver and pyrargyrite. Wallrock alteration of this deposit contains silicification, pyritization, dolomitization, chloritization and sericitization. Based on mineral petrography and paragenesis, dolomites from this deposit are classified two type (1. dolomite (D0) as wallrock, 2. dolomite (D1) as wallrock alteration in Pb-Zn mineralization quartz vein ore). The structural formulars of dolomites are determined to be Ca1.03-1.01Mg0.95-0.83Fe0.12-0.02Mn0.02-0.00(CO3)2(D0) and Ca1.16-1.00Mg0.79-0.44Fe0.53-0.13Mn0.03-0.00As0.01-0.00(CO3)2(D1), respectively. It means that dolomites from the Xiquegou deposit have higher content of trace elements compared to the theoretical composition of dolomite. The dolomite (D1) from quartz vein ore has higher content of these trace elements (FeO, PbO, Sb2O5 and As2O5) than dolomite (D0) from wallrock. Dolomites correspond to Ferroan dolomite (D0), and ankerite and Ferroan dolomite (D1), respectively. The structural formular of chlorite from quartz vein ore is (Mg1.65-1.08Fe2.94-2.50Mn0.01-0.00Zn0.01-0.00Ni0.01-0.00Cr0.02-0.00V0.01-0.00Hf0.01-0.00Pb0.01-0.00Cu0.01-0.00As0.03-0.00Ca0.02-0.01Al1.68-1.61)5.77-5.73(Si2.84-2.76Al1.24-1.16)4.00O10(OH)8. It indicated that chlorite of quartz vein ore is similar with theoretical chlorite and corresponds to Fe-rich chlorite. Compositional variations in chlorite from quartz vein ore are caused by mainly octahedral Fe2+ <-> Mg2+ (Mn2+) substitution and partly phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV).

UHV Materials (초고진공계재료)

  • 박동수
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.24-24
    • /
    • 1998
  • 반도체장비를 포함하는 초고진공장비의 園훌化가 급속히 그리고 절실히 요구되고 있는 것이 현실정이다. 當面해서 실현할 국산진공장비의 대상은 廣範圍하다. 즉, 각종 진공 pump ( (rotary, dry, diffusion, cryo, ion, turbo melecular pump), 진공 chamber, 진공 line, gate valve 를 위 시 한 진공 V머ve, flange, gasket, fl않d야lU, mainpulater 퉁 진공 部品이 다. 진공계 의 핵심 은 適切하고 優良한 진공재료의 선태파 사용이다. 진공장비는 사용자가 원하는 진공도를 원하 는 시간 동안 륨空度를 유지해 주어야 한다. 진공재료 선태의 기준사항은:(1) 기체의 透過성 (2) 薰했훌 (3) 혔體放出특성 - -outgassing과 degassing- (4) 機械的 량훌度 (5) 온도 의존성 (6) 化學톡성 (7) 加I성 및 鎔接 성 (8) 課電특성 (9) 磁氣특성 (10) 高速함子 및 放射線 특성 (11) 經濟성 및 調達생 둥이 다. 우량한 초고진공계재료는 풍부하게 개발되어 왔고, 또 新材料들이 개발되고 있다. 여기에서는 주로 초고진공 내지는 극고진공계의 構造材料, 機能材料, 部品材料 일반파 몇가지 신재료의 특 성에 관해서 記述한다. M Mild SteeHSAE, 1112, 1010, 1020, 1022, etc)., S Stainless SteeHAlSI, 304, 304L, 310, 316, 321, 347): 구조재료, chamber, fl하1ges A Aluminum과 Alloys (1060, 1100, 2014, 4032, 6(뻐1): 구조재료, chamber, flanges, gaskets A AI, Al 떠loy는 SS에 代替하는 역 할올 시 작하고 있다. C Copper, Copper Alloys(C11$\alpha$)0, C26800, C61400, Cl7200): 내장인자, gasket, cryopanel, tubing T Titanium, Ziriconium, Haf띠um 및 Alloys: 특히 Ti은 10n pump 용 getter material 이 외 에 U UHV,XHV용 chamber계로서 관심올 끌고 있다. N Nickel, Nickel Alloys (200, 204, 211, monel, nichrome): 부식 방지 , 전자장치 , 자기 장치 귀 금속(Ag, Au, Pt, Pd, Rh, Ir, Os, Ru): 보조부품, gasket, filament, coating, thermocouple, 접 합부위 T TiC, SiC, zrC, HfC, TaC 둥의 탄화물과, BN, TiN, AlN 동의 질화물, 붕화물이 둥장하고 었 다. 유리: Soda Lime, Borosilicate, Potash Soda Lead: View Port, Chamber envelope C Ceramics: AlZ03, BeO, MgO, zrOz, SiOz, MgOzSiOz, 3Alz032SiOz, Z$textsc{k}$hSiOz S상N4: e electrical, thermal insulators, crucibles, boats, single crystals, sepctr려 windows 저자는 최근 저자들이 발견한 Zr-Ti-Cu-Ni-Be amorphous alloys coated cham뾰r가 radiation p proof로 이용될 수 있는 사실을 점검하고 었다 .. Z.Y. Hua 들은 Cs3Sb를 새로운 photocathode 재료로 보고하고 있다.

  • PDF

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Cheongpung Area (기반암에 따른 청풍지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Song, Yeung-Sang;Lee, Jang-Jon
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.675-687
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics of the stream sediments in the Cheongpung area. So that we can understand the natural background and predict the prospects of geochemical disaster, if any. We collected the stream sediments samples by wet sieving along the primary channels and slow dried the collected samples in the laboratory and ground them to pass a 200 mesh using an alumina mortar and pestle for chemical analysis. Miner-alogical characteristics, major, trace and rare earth elements were determined by XRD, XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological group of stream sediments, the studied area was grouped into granitic gneiss area, metatectic gneiss area, Dado tuff area, Yuchi conglomerate area, and Neungju flow area in the Cheongpung area. Contents of major elements for the stream sediments in the Cheongpung area were $SiO_2\;47.31{\sim}72.81\;wt.%,\;A1_2O_3 \;11.26{\sim}21.88\;wt.%,\;Fe_2O_3\;2.83{\sim}8.39\;wt.%,\;CaO\;0.34{\sim}7.54\;wt.%,\;MgO\; 0.55{\sim}3.59\;wt.%,\;K_2O\;1.71{\sim}4.31\;wt.%,\;Na_2O\;0.56{\sim}2.28\;wt.%,\;TiO_2\;0.46{\sim}1.24\;wt.%,\;MnO\;0.04{\sim}0.27\;wt.%,\;P_2O_5\;0.02{\sim}0.45\;wt.%$. The con-tents of trace and rare earth elements for the stream sediments were $Ba\;700ppm{\sim}8990ppm,\;Be\;1.0{\sim}3.50ppm,\;Cu\;6.20{\sim}60ppm,\;Nb\;12{\sim}28ppm,\;Ni\;4.4{\sim}61ppm,\;Pb\;13{\sim}34ppm,\;Sr\;65{\sim}787ppm,\;V\;4{\sim}98ppm,\;Zr\;32{\sim}164ppm,\;Li\;21{\sim}827ppm,\;Co\;3.68{\sim}65ppm,\;Cr\;16.7{\sim}409ppm,\;Cs\;2.72{\sim}37.1ppm,\;Hf\;4.99{\sim}49.2ppm,\;Rb\;71.9{\sim}649ppm,\;Sb\;0.16{\sim}5.03ppm,\;Sc\;4.97{\sim}52ppm,\;Zn\;26.3{\sim}375ppm,\;Ce\;60.6{\sim}373ppm,\;Eu\;0.82{\sim}6ppm,\;Yb\;0.71{\sim}10ppm$.

Petrochemistry and Environmental Geochemistry of Shale and Coal from the Daedong Supergroup, Chungnam Coal Field, Korea (충남탄전, 대동누층군의 셰일과 탄질암에 관한 암석화학 및 환경지구화학적 특성)

  • Lee, Chan Hee;Lee, Hyun Koo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.417-431
    • /
    • 1997
  • Characteristics of sedimentary rocks and enrichment of toxic elements in shale and coal from the Chungnam coal field were investigated based upon geochemistry of major, trace and rare earth elements. Shale and coal of the area are interbedded along the Traissic to the Jurassic Daedong Supergroup, which can be subdivided into grey shale, black shale and coal. The coal had been mined, however all the mines are abandonded due to the economic problems. The shale and coal are characterized by relatively low contents of $SiO_2$, and $Al_2O_3$ and high levels of loss-on-ignition (LOI), CaO and $Na_2O$ in comparison with the North American Shale Composite (NASC). Light rare earth elements (La, Ce, Yb and Lu) are highly enriched with the coal. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shale and coal range from 30.0 to 351.8 and from 4.2 to 106.8, which have partly negative correlations against $SiO_2/Al_2O_3$ (1.24 to 6.06), respectively. Those are suggested that controls of mineral compositions in shale and coal can be due to substitution and migration of those elements by diagenesis and metamorphism. Shale and coal of the area may be deposited in terrestrial basin deduced from high C/S (39 to 895) and variable composition of organic carbon (0.39 to 18.40 wt.%) and low contents of reduced sulfur (0.01 to 0.05 wt.%). These shale and coal were originated from the high grade metamorphic and/or igneous rocks, and the rare earth elements of those rocks are slightly influenced with diagenesis and metamorphism on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.38 to 0.85) and Th/U (3.6 to 14.6). Characteristics of trace and rare earth elements as Co/Th (0.07 to 0.86), La/Sc (0.31 to 11.05), Se/Th (0.28 to 1.06), V/Ni (1.14 to 3.97), Cr/V (1.4 to 28.3), Ni/Co (2.12 to 8.00) and Zr/Hf (22.6~45.1) in the shale and coal argue for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (1.36 to 21.68), Th/Yb (3.5 to 20.0) and La/Th (0.31 to 7.89), and their origin is explained by derivation from a mixture of mainly acidic igneous and metamorphic rocks. Average concentrations in the shale and coal are As=7.2 and 7.5, Ba=913 and 974, Cr=500 and 145, Cu=20 and 26, Ni=38 and 35, Pb=30 and 36, and Zn=77 and 92 ppm, respectively, which are similar to those in the NASC. Average enrichment indices for major elements in the shale (0.79) and coal (0.77) are lower than those in the NASC. In addition, average enrichment index for rare earth elements in coal (2.39) is enriched rather than the shale (1.55). On the basis of the NASC, concentrations of minor and/or environmental toxic elements in the shale and coal were depleted of all the elements examined, excepting Cr, Pb, Rb and Th. Average enrichment indices of trace and/or potentially toxic elements (As, Cr, Cu, Ni, Pb, U and Zn) are 1.23 to 1.24 for shale and 1.06 to 1.22 for coal, respectively.

  • PDF