• Title/Summary/Keyword: $H{\ddot{o}}lder$ functions

Search Result 15, Processing Time 0.01 seconds

SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION

  • Baek, In-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.7-21
    • /
    • 2015
  • We give the characterization of H$\ddot{o}$lder differentiability points and non-differentiability points of the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs (RNT) singular function ${\Psi}_{a,p}$ satisfying ${\Psi}_{a,p}(a)=p$. It generalizes recent multifractal and metric number theoretical results associated with the RNT function. Besides, we classify the singular functions using the singularity order deduced from the H$\ddot{o}$lder derivative giving the information that a strictly increasing smooth function having a positive derivative Lebesgue almost everywhere has the singularity order 1 and the RNT function ${\Psi}_{a,p}$ has the singularity order $g(a,p)=\frac{a{\log}p+(1-a){\log}(1-p)}{a{\log}a+(1-a){\log}(1-a)}{\geq}1$.

HYPERBOLIC TYPE CONVEXITY AND SOME NEW INEQUALITIES

  • Toplu, Tekin;Iscan, Imdat;Kadakal, Mahir
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.301-318
    • /
    • 2020
  • In this paper, we introduce and study the concept of hyperbolic type convexity functions and their some algebraic properties. We obtain Hermite-Hadamard type inequalities for this class of functions. In addition, we obtain some refinements of the Hermite-Hadamard inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is hyperbolic convexity. Moreover, we compare the results obtained with both Hölder, Hölder-İşcan inequalities and power-mean, improved-power-mean integral inequalities.

ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS

  • Argyros, Ioannis Konstantinos;Cho, Yeol Je;George, Santhosh
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.251-266
    • /
    • 2014
  • In this paper, we use Newton's method to approximate a locally unique solution of an equation in Banach spaces and introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton's method than before [1]-[13], in some interesting cases, provided that the Fr$\acute{e}$chet-derivative of the operator involved is p-H$\ddot{o}$lder continuous (p${\in}$(0, 1]). Numerical examples involving two boundary value problems are also provided.

ON HERMITE-HADAMARD-TYPE INEQUALITIES FOR DIFFERENTIABLE QUASI-CONVEX FUNCTIONS ON THE CO-ORDINATES

  • Chen, Feixiang
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.303-314
    • /
    • 2014
  • In this paper, a new lemma is established and several new inequalities for differentiable co-ordinated quasi-convex functions in two variables which are related to the left-hand side of Hermite-Hadamard type inequality for co-ordinated quasi-convex functions in two variables are obtained.

FOURIER SERIES ACCELERATION AND HARDY-LITTLEWOOD SERIES

  • Ciszewski, Regina;Gregory, Jason;Moore, Charles N.;West, Jasmine
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.263-276
    • /
    • 2013
  • We discuss the effects of the ${\delta}^2$ and Lubkin acceleration methods on the partial sums of Fourier Series. We construct continuous, even H$\ddot{o}$lder continuous functions, for which these acceleration methods fail to give convergence. The constructed functions include some interesting trigonometric series whose properties were investigated by Hardy and Littlewood.

NEW OSTROWSKI TYPE INEQUALITIES INVOLVING TWO FUNCTIONS

  • Liu, Wen-Jun;Xue, Qiao-Ling;Dong, Jian-Wei
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.291-297
    • /
    • 2008
  • In this paper, new inequalities of Ostrowski type involving two functions and their derivatives for mapping whose derivations belong to $L^p$[a, b], p>1 are established.

  • PDF