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Abstract. In this work, we shall give the degree of approximation for functions belonging

to Hölder class by matrix summability method of multiple Fourier series in the Hölder

metric.

1. Introduction and some Notations

Suppose that f(x, y) is integrable in the sense of Lebesgue over the square
S2 := S(−π, π;−π, π) and of period 2π in x and in y. If f(x, y) is defined only
on the square S2, we extend it periodically onto the whole xy-plane. The double
Fourier series of f(x, y) can be written in the form

f(x, y) ∼ ∑
m,n∈N

λmn[ηmn cos mx cos ny + µmn sin mx cosny

+ρmn cos mx sin ny + ζmn sin mx sinny]

where

λmn =





1/4, m = n = 0;
1/2, m > 0, n = 0 ∨m = 0, n > 0;
1, m > 0, n > 0.

and the coefficients ηmn, µmn, ρmn and ζmn are calculated by the formulas
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ηmn =
1
π2

∫∫

S2

f(x, y) cos mx cosnydxdy,

µmn =
1
π2

∫∫

S2

f(x, y) sin mx cosnydxdy,

ρmn =
1
π2

∫∫

S2

f(x, y) cos mx sin nydxdy,(1.1)

ζmn =
1
π2

∫∫

S2

f(x, y) sin mx sin nydxdy,

for m = 0, 1, 2, . . . and n = 0, 1, 2 . . .. Now let

smn(x, y) =
m∑

i=0

n∑

j=0

[ηij cos ix cos jy + µij sin ix cos jy

+ρij cos ix sin jy + ζij sin ix sin jy].

The quantity smn(x, y) (m = 0, 1, 2, . . .; n = 0, 1, 2 . . .) are called the partial sums
of double Fourier series. According to (1.1), we know that

smn(x, y) =
1
π2

∫∫

S2

f(x + u, y + v)
[sin(m + 1/2)u][sin(n + 1/2)v]

4sin(u/2)sin(v/2)
dudv.

Moreover, let

τmn(x, y) = τmn(f ; A,U ; x, y) :=
m∑

i=0

n∑

j=0

amibnjsij(x, y), ∀m,n ≥ 0

where A ≡ (am,i) and U ≡ (bn,j) are lower triangular infinite matrices such that:

(1.2) am,i =
{ ≥ 0, i ≤ m;

0, i > m
(i,m = 0, 1, 2, . . .) ∧

m∑

i=0

am,i = 1

and

(1.3) bn,j =
{ ≥ 0, j ≤ n;

0, j > n
(j, n = 0, 1, 2, . . .) ∧

n∑

j=0

an,j = 1.

The double Fourier series of the function f(x, y) is called to be (A,U)-summable
to a finite number s, if τmn(x, y) → s as m,n →∞. The condition of regularity for
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double matrix summability means are given by

m∑

i=0

n∑

j=0

amibnj → 1, as m,n →∞,

lim
m,n

n∑

j=0

|amibnj | = 0, for each i = 1, 2, . . . ,(1.4)

lim
m,n

m∑

i=0

|amibnj | = 0, for each j = 1, 2, . . . .

Let
Hα = {f ∈ C2π : |f(x)− f(y)| ≤ K|x− y|α}

where K is a positive constant, not necessarily the same at each occurrence. It is
known that Hα is a Banach space(see Prösdorff, [7]) with the norm ‖ · ‖α defined
by

(1.5) ‖f‖α = ‖f‖C + sup
x 6=y

∆αf(x, y)

where

∆αf(x, y) =
|f(x)− f(y)|
|x− y|α (x 6= y),

by convention ∆0f(x, y) = 0 and

‖f‖C = sup
x∈[−π,π]

|f(x)|.

The metric induced by the norm (1.5) on Hα is called the Hölder metric. Prösdorff
has been studied the degree of approximation in the Hölder metric and proved the
following theorem:

Theorem A.([7]) Let f ∈ Hα(0 < α ≤ 1) and 0 ≤ β < α ≤ 1. Then

(1.6) ‖σn(f)− f‖β = O(1)
{

nβ−α , 0 < α < 1;
nβ−1 ln n , α = 1

where σn(f) is Fejér means of the Fourier series of f .
The case β = 0 in Theorem A is owing to Alexits [1]. Chandra obtained a

generalization of Theorem A in the Woronoi-Nörlund transform [2]. In [6], Mohap-
atra and Chandra considered the problem by matrix means of the Fourier series of
f ∈ Hα. In the one-dimensional case, these problems have been studied in detail.
Naturally, similar problems are considered for the periodic functions with two vari-
ables. Stepanets investigated the problem of the approximation of functions f(x, y),
2π-periodic with respect to each of the variables by the partial sums of their Fourier
sums and under the some conditions in [9, 10]. In [5], Lal studied the approximation
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of functions belonging to Lipschitz class by matrix summability method for double
Fourier series under the uniform norm.

The Hölder class for f(x, y) continuous functions periodic in both variables with
period 2π is defined as

H(α,β) = {f : |f(x, y; z, w)| := |f(x, y)− f(z, w)| ≤ C1(|x− z|α + |y − w|β)}

for some α, β > 0 and for all x, y, z, w where C1 is a positive constant may depend
on f , but not on x, y, z, w. This class of functions is also called Lipschitz class and
denoted by Lip(α, β). It can be easily verified that Hα,β is a Banach space with
the norm ‖ · ‖α,β defined by

(1.7) ‖f‖α,β = ‖f‖C + sup
x6=z , y 6=w

∆α,βf(x, y; z, w)

where

∆α,βf(x, y; z, w) =
|f(x, y)− f(z, w)|
|x− z|α + |y − w|β (x 6= z , y 6= w),

by convention ∆0,0f(x, y; z, w) = 0 and

‖f‖C = sup
(x,y)∈S2

|f(x, y)|.

Moreover, a function f in Lip(α, β) is said to belong to the little Lipschitz class
lip(α, β) if

lim
z→x, w→y

(|x− z|α + |y − w|β)−1|f(x, y; z, w)| = 0

uniformly in (x, y). The aim of this paper is as follows. First, the approximation to
functions f(x, y) belonging to these Lipschitz classes is given by matrix summability
method of double Fourier series in accordance with the norm in (1.7). Later the
approximation is generalized to the N -multiple Fourier series.

Throughout this paper, we shall also use the following notations:

Ψ(u, v) := Ψ(x, y;u, v) :=
1
4
{f(x + u, y + v) + f(x + u, y − v)

+f(x− u, y + v) + f(x− u, y − v)− 4f(x, y)}
and

F (u, v) = Φ(u, v)−Ψ(u, v)

where Φ(u, v) := Ψ(z, w;u, v). Since f(x, y) ∈ H(α,β), it is clear that

(1.8) |F (u, v)| = O(|x− z|α + |y − w|β).
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2. In Case of Double Fourier Series

The approximation by matrix means for double Fourier series is as follows with
respect to Hölder metric.

Theorem 2.1. Assume A ≡ (am,i) and U ≡ (bn,j) are lower triangular matrices
where (am,i) and (bn,j) are nondecreasing sequences with respect to i ≤ m and
j ≤ n satisfying the conditions (1.2) and (1.3), respectively such that double matrix
method (A,U) is regular. If f(x, y) is a function of period 2π in x and y Lebesgue
integrable in S2 belonging to the class H(α,β) for 0 < α, β ≤ 1, then

‖τmn − f‖α,β = O(1)





(m + 1)−α + (n + 1)−β , 0 < α < 1, 0 < β < 1;
log((m + 1)π)

(m + 1)
+

log((n + 1)π)
(n + 1)

, α = β = 1

for m,n = 0, 1, 2, . . . .

For small Lipschitz class, the analogy of the Theorem can be written if ”O”
is replaced by ”o” as m,n → ∞ independently one another, and f ∈ Lip(α, β) is
replaced by f ∈ lip(α, β) for 0 < α, β < 1. We don’t enter in details.

Furthermore, double matrix summability method gives us the following means
for some important cases:

• (C, 1, 1) means, when am,i =
1

m + 1
and bn,j =

1
n + 1

for all i and j, respec-

tively [3];

• (N, pm, qn) means, when am,i =
pm−i

Pm
and bn,j =

qn−j

Qn
; where Pm =

m∑
k=0

pk 6=

0 and Qn =
n∑

k=0

qk 6= 0 [4];

• (H, 1, 1) means, when am,i =
1

(m− i + 1) log m
and bn,j =

1
(n− j + 1) log n

[8].

Taking into account the first two case above, we write the following results.

Corollary 2.2. If f(x, y) is a function of period 2π in x and y Lebesgue integrable
in S2 belonging to the class H(α,β) for 0 < α, β ≤ 1, then

‖σmn − f‖α,β = O(1)





(m + 1)−α + (n + 1)−β , 0 < α < 1, 0 < β < 1;
log((m + 1)π)

(m + 1)
+

log((n + 1)π)
(n + 1)

, α = β = 1

for m,n = 0, 1, 2, . . ., where

σmn(x, y) =
1

(m + 1)(n + 1)

m∑

i=0

n∑

j=0

sij(x, y), ∀m,n ≥ 0.
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Corollary 2.3. If f(x, y) is a function of period 2π in x and y Lebesgue integrable
in S2 belonging to the class H(α,β) for 0 < α, β < 1, then

‖Nmn − f‖α,β = O(1)
{
(m + 1)−α + (n + 1)−β

}

for m,n = 0, 1, 2, . . ., where

Nmn(x, y) =
1

PmQn

m∑

i=0

n∑

j=0

pm−iqn−jsij(x, y), ∀m,n ≥ 0.

Before giving the proof of Theorem 2.1, we need the following auxiliary results.

Lemma 2.4. Let (am,i) and (bnj) be real nonnegative and nondecreasing sequence
with (1.2) and (1.3), respectively.

(i) For 0 < u ≤ 1/(m + 1), we have Km(u) = O(m + 1) where

Km(u) :=
1
π

m∑

i=0

am,i

sin(i + 1
2 )u

sin(u
2 )

.

(ii) For 0 < v ≤ 1/(n + 1), we have Kn(v) = O(n + 1) where

Kn(v) :=
1
π

n∑

j=0

bn,j

sin(j + 1
2 )v

sin(v
2 )

.

This is easily proved by an elementary calculation.

Lemma 2.5.([5]) Assume that (am,i) and (bnj) be real nonnegative and nondecreas-
ing sequence with i ≤ m and j ≤ n, respectively.

(i) For 1/(n + 1) < v ≤ π and any n ∈ N, we have

Kn(v) = O(
Bn,σ

v
),

where Bn,σ =
n∑

j=n−σ

bnj and σ denote integer part of 1
v .

(ii) For 1/(m + 1) < u ≤ π and any m ∈ N, we have

Km(u) = O(
Am,κ

u
),

where Am,κ =
m∑

i=m−κ

ami and κ denote integer part of 1
u .
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3. Proof of the Theorem 2.1

Proof. We know that

(3.1) sij(x, y)− f(x, y) =
1
π2

π∫

0

π∫

0

Ψ(u, v)
[sin(i + 1/2)u][sin(j + 1/2)v]

sin(u/2)sin(v/2)
dudv.

Taking into account (3.1) and τmn(x, y) that double matrix means of smn(x, y) , we
write

τmn(x, y)− f(x, y) =
m∑

i=0

n∑

j=0

amibnj {sij(x, y)− f(x, y)}

=
1
π2

π∫

0

π∫

0

Ψ(u, v)
m∑

i=0

n∑

j=0

amibnj
[sin(i + 1/2)u][sin(j + 1/2)v]

sin(u/2)sin(v/2)
dudv

=

π∫

0

π∫

0

Ψ(u, v)Km(u)Kn(v)dudv

Let us estimate that

(3.2) sup
x6=z, y 6=w

|τmn(x, y)− f(x, y)− (τmn(z, w)− f(z, w))|
|x− z|α + |y − w|β = O(1).

|τmn(x, y)− f(x, y)− (τmn(z, w)− f(z, w))| =
∣∣∣∣∣∣

π∫

0

π∫

0

F (u, v)Km(u)Kn(v)dudv

∣∣∣∣∣∣

≤




1
(m+1)∫

0

1
(n+1)∫

0

+

1
(m+1)∫

0

π∫

1
(n+1)

+

π∫

1
(m+1)

1
(n+1)∫

0

+

π∫

1
(m+1)

π∫

1
(n+1)


 |F (u, v)Km(u)Kn(v)|dudv

=: J1 + J2 + J3 + J4.(3.3)

Therefore, from (1.8) and Lemma 2.4, we obtain

J1 =

1/(m+1)∫

0

1/(n+1)∫

0

|F (u, v)Km(u)Kn(v)|dudv

= (m + 1)(n + 1)

1/(m+1)∫

0

1/(n+1)∫

0

|F (u, v)|dudv = O(|x− z|α + |y − w|β)(3.4)
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for 0 < α, β ≤ 1. By using Lemma 2.4, Lemma 2.5 and again (1.8), then we have

J2 =

1/(m+1)∫

0

π∫

1/(n+1)

|F (u, v)Km(u)Kn(v)|dudv

= (m + 1)

1/(m+1)∫

0

π∫

1/(n+1)

|F (u, v)|Bn,σ

v
dudv = O(|x− z|α+|y − w|β)

π∫

1/(n+1)

Bn,σ

v
dv

≤ O(|x− z|α + |y − w|β)

π∫

1/(n+1)

Bn,1/v

v
dv

= O(|x− z|α + |y − w|β)

(n+1)∫

1/π

Bn,t

t
dt = O(|x− z|α + |y − w|β)(3.5)

since Bn,t

t is monotonic increasing. Similarly, we can prove that

(3.6) J3 =

π∫

1/(m+1)

1/(n+1)∫

0

|F (u, v)Km(u)Kn(v)|dudv = O(|x− z|α + |y − w|β)

and

(3.7) J4 =

π∫

1/(m+1)

π∫

1/(n+1)

|F (u, v)Km(u)Kn(v)|dudv = O(|x− z|α + |y − w|β).

By combining (3.3)-(3.7), we obtain (3.2). On the other hand, we know that from
[5]

(3.8) ‖τmn − f‖C = O(1)





(m + 1)−α + (n + 1)−β , 0 < α, β < 1;
log((m + 1)πe)

(m + 1)
+

log((n + 1)πe)
(n + 1)

, α = β = 1

for m,n = 0, 1, 2, . . . . Since log e < log(m + 1)π and log e < log(n + 1)π, we omit
the number ”e” in the formula (3.8). Therefore, according to (3.2) and (3.8), the
proof of Theorem 2.1 is completed. 2

4. In Case of N-Multiple Fourier Series, N ≥ 3.

Let f(x1, . . . , xN ) is integrable over the N dimensional cube SN and of period
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2π in each variable. The N -multiple Fourier series of f(x1, . . . , xN ) can be written
in the form

f(x1, . . . , xN ) ∼
∑

m1∈Z

∑

m2∈Z
· · ·

∑

mN∈Z
cm1,m2,...,mN

ei(m1x1+m2x2+···+mN xN ).

where cm1,m2,...,mN
is the Fourier coefficients of f (see, [11, p. 300]). The series is

denoted by S[f ] and the partial sums of it are given by

Sm1m2...mN
(x1, . . . , xN ) := π−N

π∫

−π

· · ·
π∫

−π

f(x1+t1, . . . , xN+tN )
N∏

j=1

Dmj
(tj)dt1 . . . dtN

where Dmj
(tj) are the Dirichlet kernels for each j. Moreover, similar to the two-

dimensional, we can write

τm1m2···mN (x1, . . . , xN ) =: τm1m2···mN (f ; {Ak}N
1 ; x1, . . . , xN )

:=
m1∑

i1=0

m2∑

i2=0

. . .

mN∑

iN=0

am1i1 . . . amN iN
Si1i2···iN

(x1, . . . , xN )

for all mk ≥ 0. Here {Ak}N
k=1 ≡ {(amk,ik

)}N
k=1 are lower triangular infinite matrices

such that:

(4.1) amk,ik
=

{ ≥ 0, ik ≤ mk;
0, ik > mk

(mk, ik = 0, 1, 2, . . .) ∧
mk∑

ik=0

amk,ik
= 1

for each k = 1, 2, . . . , N. The N -multiple Fourier series of function f(x1, . . . , xN ) is
called to be (A1, . . . , AN )-summable to a finite number `, if τm1m2···mN

(x1, . . . , xN )
→ ` as m1, m2, · · · ,mN → ∞. The condition of regularity for N -multiple matrix
summability means are given by

m1∑

i1=0

m2∑

i2=0

. . .

mN∑

iN=0

(am1i1 . . . amN iN
) → 1, as m1,m2, · · · ,mN →∞,

lim
mi

m2∑

i2=0

m3∑

i3=0

. . .

mN∑

iN=0

(am1i1 . . . amN iN
) = 0, for each i1 = 1, 2, . . . ,

lim
mi

m1∑

i1=0

m3∑

i3=0

. . .

mN∑

iN=0

(am1i1 . . . amN iN
) = 0, for each i2 = 1, 2, . . . ,

...

lim
mi

m1∑

i1=0

m2∑

i2=0

. . .

mN−1∑

iN−1=0

(am1i1 . . . amN iN
) = 0, for each iN = 1, 2, . . . .
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Next, we give the notion of Lipschitz classes of functions on SN . Let f(x1, . . . , xN )
be a continuous periodic function with period 2π in each variable. The function
f belongs to the Lipschitz class Lip(α1, α2, . . . , αN )(or H(α1,α2,...,αN )) for some
α1, α2, . . . , αN ≥ 0 if there exists a constant K1 such that

|f(x1, . . . , xN ; y1, . . . , yN )| := |f(x1, . . . , xN )− f(y1, . . . , yN )| ≤ K1

N∑

k=1

|xk − yk|αk

for all xk, yk where k = 1, . . . , N . Furthermore, a function f in Lip(α1, α2, . . . , αN )
is said to belong to little Lipschitz class lip(α1, α2, . . . , αN ) if

lim
y1→x1,··· ,yN→xN

|f(x1, . . . , xN ; y1, . . . , yN )|
N∑

k=1

|xk − yk|αk

= 0

uniformly in (x1, . . . , xN ).
The function space H(α1,α2,...,αN ) is a Banach space with respect to the norm

‖ · ‖α1,α2,...,αN
defined by

‖f‖α1,α2,...,αN = ‖f‖C + sup
x1 6=y1,...,xN 6=yN

∆α1,α2,...,αN f(x1, . . . , xN ; y1, . . . , yN )

where

∆α1,α2,...,αN f(x1, . . . , xN ; y1, . . . , yN ) =
|f(x1, . . . , xN ; y1, . . . , yN )|

N∑
k=1

|xk − yk|αk

,

for x1 6= y1, . . . , xN 6= yN by convention ∆0,...,0f(x1, . . . , xN ; y1, . . . , yN ) = 0 and

‖f‖C = sup
(x1,...,xN )∈SN

|f(x1, . . . , xN )|.

Now as an extension of Theorem 2.1, we write the following theorem.

Theorem 4.1. Let {Ak}N
k=1 ≡ {(amk,ik

)}N
k=1, N ≥ 3, are lower triangular ma-

trices where {(amk,ik
)}N

k=1 are nondecreasing sequences with respect to ik ≤ mk,
k = 1, . . . , N , satisfying the conditions (4.1), respectively such that N -multiple ma-
trix method (A1, A2, . . . , AN ) is regular. If f(x1, x2, . . . , xN ) is a function of period
2π in each variable Lebesgue integrable in SN belonging to the class H(α1,α2,...,αN )

for 0 < α1, α2, . . . , αN ≤ 1, then

‖τm1m2···mN
−f‖α1,α2,...,αN

= O(1)





N∑
k=1

(mk + 1)−αk , 0 < α1, α2, . . . , αN < 1;

N∑

k=1

log((mk + 1)π)
(mk + 1)

, α1 = α2= · · · = αN=1,
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for mk = 0, 1, 2, . . ., where k = 1, 2, ..., N and N ≥ 3 is a fixed integer.

Proof. One needs the extensions of Lemma 2.4 and Lemma 2.5 with respect to each
variable from double to N -multiple. After this, the proof runs along the same lines
as that of Theorem 2.1. 2

Let 0 < α1, α2, . . . , αN < 1. The analogy of statement in the Theorem 2.1 can
be written if ”O” is replaced by ”o” as m1,m2, · · · ,mN →∞, and f ∈ H(α1,α2,...,αN )

is replaced by f ∈ lip(α1, α2, . . . , αN ).
N - multiple matrix summability method gives us the (C, 1, 1, . . . , 1) means,

when amk,ik
=

1
mk + 1

for all ik, (k = 1, 2, . . . , N) [11]. Then, it will be in the form

σm1m2···mN
(x1, . . . , xN ) =

(
N∏

k=1

1
mk + 1

)
m1∑

i1=0

m2∑

i2=0

. . .

mN∑

iN=0

Si1i2···iN
(x1, . . . , xN )

Therefore, we observe the next result from the Theorem 4.1.

Corollary 4.2. If f(x1, x2, . . . , xN ) is a function of period 2π in each vari-
able Lebesgue integrable in SN belonging to the class H(α1,α2,...,αN ) for 0 <
α1, α2, . . . , αN ≤ 1, then

‖σm1m2···mN
−f‖α1,α2,...,αN

= O(1)





N∑
k=1

(mk + 1)−αk , 0 < α1, α2, . . . , αN < 1;

N∑

k=1

log((mk + 1)π)
(mk + 1)

, α1 = α2 = · · · = αN=1

for mk = 0, 1, 2, . . ., where k = 1, 2, ..., N and N ≥ 3 is a fixed integer.
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