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GENERAL HOLDER TYPE INEQUALITIES ON THE
FUNCTIONS OF GkG¢y-BOUNDED VARIATIONS
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ABSTRACT. For G¢-sequences ¢; and s-functions x;(¢ = 1,2,3) we obtain the

most general Holder type inequalities on the functions of GkG¢-bounded varia-
tions.
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In his studies on generalized functions of bounded variation and their applica-
tion to the theory of harmonic functions, D. S. Cyphert([1]) viewed &- function
K as a rescaling of lengths of subintervals in [a, b] such that the length of [a, b] is
1if k(1) = 1. We are requiring that « has the following properties on a closed
interval [0, 1];

(1) & is continuous with x(0) = 0 and (1) =1,

(2) & is concave and strictly increasing, and

(3) 1ir0n+(n(:r)/:c) = 0.

T—

We shall say that x;(3 = 1,2, 3) satisfy the A-condition (briefly x; € Ag(i =
1,2,3)) if k-functions k1, k2 and kg satisfy x7'(z)ky *(z) > &3 (z) for z > 0.
Let ¢ = {¢n} be a sequence of monotone nondecreasing convex functions
defined on the nonnegative real numbers such that ¢,(0) = 0 and ¢,(x) > 0
forz >0and n = 1,2,---. We shall say that ¢ is a G¢-sequence, in symbol
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¢ € GPS if ¢pp () > Ppy1(z) for all n and z and in addition if Z on(x) diverges
n

for z > 0 [4].
Note that if ¢ = {¢n} is a ¢-sequence, in symbol ¢ € ¢S, then ¢ = {¢,.} is a
Gé-sequence, that is, ¢S C G@S in the sence of D.S. Cyphert[1].

y
Let us define ¥,(y) = sup {mfy] — ¢p(z) 2z 2 0} = / o, H(s)ds,y > 0.
0
Then 1 = {¢¥n} is called as the complementary function to ¢, and (@n,¥n)
the complementary pair.
In sequel we denote by A - B the collection of all products f - g for any
; (t
functions f € A and g € B, and define Ry, (t) = @t(—t) and Sy, (t) = E/}lt(_) for
the corresponding complementary pair (¢;, %) of a Gé-sequence ¢ = {¢n}.
Note that Ry, (t) and Sy, (t) are substitutes for the useful expressions t#~1,
/(=1 in the LP-gpaces, but not mutually complementary inverse, in general.
A G¢-sequence ¢ = {¢y,} is said to satisfy the Ag-condition, in symbol ¢ € Ay
if there is a constant ¢ > 0 and ug > 0 such that 2Ry, (2z) < cRy,(z), for all
T > ug, and the A'-condition, in symbol ¢ € A’ (¢) if there is a constant ¢ > 0
such that Ry, (zy) < cRy,(z)Ry,(y), 2,y = 2o > 0.

For ¢1 = {¢1n}, ¢2 = {d2n} € GpS , ¢1 is stronger than ¢a, ¢1 > ¢2
in symbols, if Ry, (z) < aRy,,(az),z > zo > 0 for some a > 0 and zo (
depending on a). We can define equivalence of pair of G¢-sequences: ¢1 ~ ¢2
iff @1 > ¢2 and ¢y = ¢;: there exist numbers 0 < a < b < 00, xp > 0 such that
aRy, ., (az) < Ry, (x) < bRy, (bz),z > zo.

Let ¢ = {¢n} € G¢S be defined on [0, co) for all n. The average function
x
A(¢pn) of ¢y, is the function given by A(¢,)(z) = i» / ¢n(r)dr for allz > 0
0
and A(¢)(0) = 0.

A function f is of k-bounded variation on [a,b] if there exists a positive
constant ¢ such that, for every collection {I,,} of nonoverlapping subintervals of

a, b], Z lf(L)] € czm(ﬂnl/(b«— a)), where I, = [Zp, yn) and [In| = yn — Zn.
M. J. Schramm [4] generalized the above idea by considering a sequence

of increasing convex functions ¢ = {¢,,} defined on [0,00); f is of ¢-bounded

variation on [a, b if V,(f;a,b) = V4(f) = sup (Z (. f(In)l) is finite.

A function f is said to be of kKG¢-bounded variation on {a, b] if there exists a
positive constant ¢ such that for any appropriate collection {I,} of nonoverlap-

ping subintervals of [a, b], Z%(U(In)\) < cz &(|1,,)/ (b — a)), where [a,b] =
U1, and |I,,] is the length of I,,. '



General Holder type inequalities 293

The total variation of f over [a, b] is defined by

WVoo(f) = KVoy(S - a.8) = sup (32 6n (7)) 32 w(1Tal/ 0= a)),

where the supremum is taken over all collections {I,} of nonoverlapping subin-
tervals in [a,b]. We denote by kG¢BV the collection of all functions of KG¢-
bounded variation on [a, b].

A function f is said to be of generalized KG¢-bounded variation on [a,b], in
symbols f € GkGdBV [a, b] if there exists a positive constant ¢ such that for any
sequences {I,,} of intervals in A,

> 6n(fTa))) <Y w(|1al/(b— a)).

where [a,b] = |JI,, and |I,,| is the length of I,,. The total GkG¢-variation of f
over [a, b is defined by

WVas(F,4) = sup (3 6a(lf(I)])/ Y- w(1Ll/ (b= @),

where the supremum is taken over all collections {I,} of intervals in A[2].

Let GKG$BYy = {f € GrGoBV|a,b | f(a) = 0}. For any f in GKG$BV,
let us define the norm as in the Orlicz spaces;

U7 = Ufllncs = inf{ e > 0 GrVio(f) < 1}

Then (GkG@BVy, || - ||) is 2 Bannach space and GkG$BV may be a Bannach
space with the norm ||f — f(a)||+ | f(a) | .

From now on we will consider G¢-sequences ¢; = {¢n} and s-functions
ki € Ag fori=1,2,3.
Theorem 1. (a) If ¢; = {¢in} € GoS (i = 1,2, 3) satisfy the inequality
RR¢~1 (x)RR(#A (1’) < O‘RRd)A (.’E) (1)
in 2n 3n
for alln and x > 0, then we have, for all f € Gk1Gd1BVy and g € GraGoa BV,

Gr1Gp1BVy - GraGdaBVy C GrsGesBW
and
I fallcrsces < 20l fllanico: Ngllaraces-
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(b} If the inequality (1) in part (a) is replaced by

< Rpua(@)Rigz oy ®) + Rins 1) Ryt 00, (@) (@)

m RQfr

then, for all f € Gk1Gp1BVy and g € GroGp2 BV,

GK1G¢1BVO . anG(ﬁzBVo C GRgGQSaB%
and

Hfgllcrsces < 4l fllarics, IgllGraces-

Proof. (a)By the convexity of ¢, since the inequality (1) implies the inequal-
ity(2), the part (a) holds.
(b)By the inequality (2}, since

2 03n(|f(Tn)g(In)l/40(1 +€)*) < }(VG@ (f) + Vg, (9)) <11,

Y k3(Ial/(b— a)) ~2
we have K3Vag, (fg/4(1 +€)?) < 1, which implies || fgllnscgs < 4(1 +¢), and
hence the theorem follows by letting & — 0. o

: 1
Corollary 2. For ¢; = {¢in} € GS (i = 1,2) with / Rys (DR (Bt <
O " T
z
0o, if we let g5t (z) = a/ R¢1_1(t)R¢2_1(t)dt for some constant «, then ¢3 =
0 n 1)

{p3n} € G9S, and, for all f € Gk1G¢1BVy and g € GraGpa BV,
Gr1Gd1BVy - GraG o BVy € GryGosBVy

and
|||f9me3G¢s < ZO‘%fmeG%mgmanquz'

Proof. Since Ry-1(z) (¢ = 1,2) are nonincreasing, it follow that de);l(x) is
concave and ¢3,1(0) = 0. By the inequality (1), this is proved. O

Lemma 3. For ¢; = {¢in} € GpS(i = 1,2, 3), the followings are equivalent; for
nonnegative z,y,z > 0,

(a) a1zyRy,, (17y) < TRy, (x) + YRy, (y) for some a > 0;

(t) Jlim sup(aR,:(2)Ry;1(a)/Rypa(2)) < oo

(C) azyz < mRém(m) + yR¢2n (y) + Z‘S’¢3n (z);
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(e) O‘4xZS¢2n (044%2:) < $R¢l'n (l‘) + zsd)sn (Z),

where o; > 0 are some constants and (P, Vin) the coresponding complementary
pairs.

Proof. Assume that (a) holds. Since z < (¢;} 0 ¢in)(x), if we let z = uR ¢1—1(u)
and y = uR o7 (u), then (a) implies (b).
Conversely, if (b) holds, then there are oy > 0 and ug > 0 such that
U
Ry (u)R%—: (u) < a—1R¢3~nl (u),u > u,

and letting z = uR;-1(u) and y = uR . 1(u) for z, y > maz(uoRy-1(uo),
up Ry (u0)), this shows that (b) implies (a).

By the property of G¢S, (a) iff (c).

For z,y,2 > z2 > 0, we have the folldwing inequalities;

a2yzSp,, (02yz) = aaryz — Ry, () < yRey, (y) + 2545, (2),

QoTYz — xyZR(bln (:B) < a2yzR’¢)1n (agyz) < yR¢2n (y) + ZRll)sn (Z)v
which implies that (c) iff (d). Simillarily (c) iff (e). O
By Lemma 3, we have the following Theorem 4;
Theorem 4. For k; € A, and ¢; = {¢in} € GPS(i = 1,2, 3), suppose that one

of (a) ~ (e) in Lemma 3 is satisfied. Then for the coresponding complementary
pairs (Gin, Win) there is a constant oy such that

Gri1Gp1BVy - GraGgaBVy C Gr3GosBY,

and
1
Gr3Vaes(fg) < ;GﬂlVGm(f)G@VG@ (9)

for any f € Gr1Gp1BVy and g € GraGpaBV,.

Theorem 5. For k; € Ay, ¢; = {din} € GdS(i = 1,2,3) and the coresponding
complementary pairs (¢in, Yin), sSuppose that one of the following conditions is
satisfied:

(i) there is a complementary pair (Gan,Van) such that

O1n > P30, 0 Pan and Gan > P3n © Yan,
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(¢1) for the above (Gan, Yun), if P3n € A', suppose that

P1n > Gan © P3n and P2n > Yan © Pan,
Then there is a constant o > 0 such that, for any f € Gk1G$1BVy and g €

GK’2G¢2B‘/03
GK}]G¢)1B% . G!‘&zGQBzBVo [ G53G¢3B‘/0

and
1
Gr3Vge,(fg) < EGMVGm (f)Gr2Vge,(9)

Proof. By (i) and the definition of >, we have, for some 3 > 0,

Q’BwR(‘ﬁSnoﬁé«in) (Qﬂx) —<— xRQSln (.’E)

and
2BYR (45, 04n) (28Y) < YR, (y), 2,y > 0 > 0.

Hence if we let a = 52, then

azyRy,, (0zy) < BrR(44,004,)(20%) + BYR (4 004.) (25Y)
< zRy, (%) + yRo,. (v),

which is (a) of Lemma 3.
Next let (ii) be true. Then, for z,y > 29 > 0,

nyR¢3n (ng) S wRd’Bn (w)waan (y)
< bzRy,, (bz) + byRg,, (by), 2,y 2 0 2 0,

for some b,c > 0. If we let a = -I;%,u = b, v = by and ug = bxy, then

auvRg,, (quv) = ab’zyRy,, (ab’zy)
U U, v v
< “Ry (=)= -
< uRd’ln(u) + vRg,, (v),

which reduces to (a) of Lemma 3. So the result holds. O
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¢
Lemma 6. For ¢1 = {¢1n} € GoS, let ¢on(t) = / Ry, (u)du, ¢3n(t) =
0

¢
/ Ry, (T)dT and ¢in(0) = 0 for i = 1,2,3. Then Ry, and Sy,, are strictly
0

increasing continuous functions in G¢S with continuous derivatives which map
[0, 00) onto itself and satisfy the followings; for any t > 0,

Rd’m (t) < 2R¢m (2t) (3)
Sd’m (R¢in (t)) <t< 2S¢m (2R¢m (t» (4)7
¢1 ~ ¢2,$2 ~ b3 (),
and the complementary version;
Spin (t) < 255, (2t) (3)
Ry, (S¢in (t)) <t < 2Ry, (2S¢in (t)) (4/)5
P1 ~ o, o ~ Y3 (5").

Proof. Note that 1 < tR;} (t)S5" (t) < 2, t > 0. Substituting ¢ — tRg,,(t), we
get

Ry..(t) <43, ($in(t) < 2Rg,,(t)-
Hence
Ry, (t) < 2Ry, () < 2Ry,,(2¢)
and
Yin(Rg;, () < din(t) < thin (2R, (1)) ().
Dividing (*) with Rg,, (t) or with 2Rg,, (t), we have

St (e (1)) < (dn(t)/ Roy, (1)) < t < 24, (2Ro,. (1),
By the continuity of ¢1, and definitions of G¢S-sequences, we have
lim R, (1) = lim oy, (8) = lim Ry, (£) = 0
and

T—00

lim Ry, (t) = lim Ry, () = oo.

Since ¢g,(t) = Ry, (t) > 0, ¢ is strictly increasing and Ry, , (t1) < R, (t2)
if t; < to, which implies that ¢s, is convex on [0, 00).
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Since Ry, (t) < ¢in(t) = Sy, (t), each statement of the Lemma has its com-
plementary version; Substituting ¢t — v;,(¢) and dividing with ¢,

S¢zn (t) < ¢ (¢zn(t)) < Sd)m (t) - ¢m(5¢m (t)) < "pm(t) < ¢m(2S¢m (t))

and
R¢in (t) < 2R¢m(2t)'

Also, Ry, (8y,,(t)) <t < 2Ry, (254,,(t)). By the simillar way, other cases are
proved W]

Note that if ¢ = {¢in} is a GpS-function, then Ry, and Sy, are increasing
continuous functions in G¢S with continuous derivatives which map [0, 00) onto
itself and satisfy for any ¢ > 0 the above inequalities;(3) ~ (5) and (3") ~ (5').

Theorem 7. For ¢1 = {¢1n} € GBS, let dan(t) = / R (0, 6un() =

/ Ry, (T)dr and ¢in(0) = 0(i = 1,2, 3), then we have the followings;

(t) for a k-function k(2 = 1,2, 3) with k1 < ks < kg,
Gr1G91BVy C GroGd1 BVy C GroGepeBVy C Gr3GoeBVy C GraG3BVy
and
Gr1GY1BVy C GraGyn BVy C GG BV C GraGipeBVy C GraGysBY,
(#1) for vy € A,
Gr1G$1BVo C GrsGr BV C GrsGenBVy
and

GHzG’If)lBVb - GI":3G’£/)1B%. C GK3G?/JQBVQ

Proof. By (5) and (5’) of Lemma 3, these are proved. O
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