GENERAL HÖLDER TYPE INEQUALITIES ON THE FUNCTIONS OF $G\kappa G\phi$ -BOUNDED VARIATIONS

JAEKEUN PARK

ABSTRACT. For $G\phi$ -sequences ϕ_i and κ -functions $\kappa_i (i=1,2,3)$ we obtain the most general Hölder type inequalities on the functions of $G\kappa G\phi$ -bounded variations.

AMS Mathematics Subject Classification : Primary 26A45, 26A42 ; Secondary 42A20

Key words and phrases: Bounded variation, $\kappa\phi$ -bounded variation, Banach space.

In his studies on generalized functions of bounded variation and their application to the theory of harmonic functions, D. S. Cyphert([1]) viewed κ -function κ as a rescaling of lengths of subintervals in [a,b] such that the length of [a,b] is 1 if $\kappa(1) = 1$. We are requiring that κ has the following properties on a closed interval [0,1];

- (1) κ is continuous with $\kappa(0) = 0$ and $\kappa(1) = 1$,
- (2) κ is concave and strictly increasing, and
- (3) $\lim_{x \to 0^+} (\kappa(x)/x) = \infty.$

We shall say that $\kappa_i(i=1,2,3)$ satisfy the Δ_{κ} -condition (briefly $\kappa_i \in \Delta_{\kappa}(i=1,2,3)$) if κ -functions κ_1 , κ_2 and κ_3 satisfy $\kappa_1^{-1}(x)\kappa_2^{-1}(x) \geq \kappa_3^{-1}(x)$ for $x \geq 0$.

Let $\phi = \{\phi_n\}$ be a sequence of monotone nondecreasing convex functions defined on the nonnegative real numbers such that $\phi_n(0) = 0$ and $\phi_n(x) > 0$ for x > 0 and $n = 1, 2, \cdots$. We shall say that ϕ is a $G\phi$ -sequence, in symbol

Received May 1, 2008. Accepted October 28, 2008.

This work is financially supported by Hanseo University Research Fund No. 2008-S-102.

^{© 2009} Korean SIGCAM and KSCAM

 $\phi \in G\phi S$ if $\phi_n(x) \ge \phi_{n+1}(x)$ for all n and x and in addition if $\sum_n \phi_n(x)$ diverges for x > 0 [4].

Note that if $\phi = \{\phi_n\}$ is a ϕ -sequence, in symbol $\phi \in \phi S$, then $\phi = \{\phi_n\}$ is a $G\phi$ -sequence, that is, $\phi S \subset G\phi S$ in the sence of D.S. Cyphert[1].

Let us define $\psi_n(y) = \sup \left\{ x|y| - \phi_n(x) : x \ge 0 \right\} = \int_0^y \varphi_n^{-1}(s)ds, y \ge 0.$ Then $\psi = \{\psi_n\}$ is called as the *complementary function* to ϕ_n and (ϕ_n, ψ_n) the *complementary pair*.

In sequel we denote by $A\cdot B$ the collection of all products $f\cdot g$ for any functions $f\in A$ and $g\in B$, and define $R_{\phi_i}(t)=\frac{\phi_i(t)}{t}$ and $S_{\phi_i}(t)=\frac{\psi_i(t)}{t}$ for the corresponding complementary pair (ϕ_i,ψ_i) of a $G\phi$ -sequence $\phi=\{\phi_n\}$.

Note that $R_{\phi_i}(t)$ and $S_{\phi_i}(t)$ are substitutes for the useful expressions t^{p-1} , $t^{1/(p-1)}$ in the L^p -spaces, but not mutually complementary inverse, in general.

A $G\phi$ -sequence $\phi = \{\phi_n\}$ is said to satisfy the Δ_2 -condition, in symbol $\phi \in \Delta_2$ if there is a constant c > 0 and $u_0 \ge 0$ such that $2R_{\phi_n}(2x) \le cR_{\phi_n}(x)$, for all $x \ge u_0$, and the Δ' -condition, in symbol $\phi \in \Delta'(c)$ if there is a constant c > 0 such that $R_{\phi_n}(xy) \le cR_{\phi_n}(x)R_{\phi_n}(y)$, $x, y \ge x_0 \ge 0$.

For $\phi_1 = \{\phi_{1n}\}$, $\phi_2 = \{\phi_{2n}\} \in G\phi S$, ϕ_1 is stronger than ϕ_2 , $\phi_1 \succ \phi_2$ in symbols, if $R_{\phi_{2n}}(x) \leq aR_{\phi_{1n}}(ax), x \geq x_0 \geq 0$ for some a > 0 and x_0 (depending on a). We can define equivalence of pair of $G\phi$ -sequences: $\phi_1 \sim \phi_2$ iff $\phi_1 \succ \phi_2$ and $\phi_2 \succ \phi_1$: there exist numbers $0 < a \leq b < \infty, x_0 \geq 0$ such that $aR_{\phi_{1n}}(ax) \leq R_{\phi_{2n}}(x) \leq bR_{\phi_{1n}}(bx), x \geq x_0$.

Let $\phi = \{\phi_n\} \in G\phi S$ be defined on $[0, \infty)$ for all n. The average function $A(\phi_n)$ of ϕ_n is the function given by $A(\phi_n)(x) = \frac{1}{x} \int_0^x \phi_n(\tau) d\tau$ for all x > 0 and $A(\phi_n)(0) = 0$.

A function f is of κ -bounded variation on [a,b] if there exists a positive constant c such that, for every collection $\{I_n\}$ of nonoverlapping subintervals of [a,b], $\sum |f(I_n)| \le c \sum \kappa(|I_n|/(b-a))$, where $I_n = [x_n,y_n]$ and $|I_n| = y_n - x_n$.

M. J. Schramm [4] generalized the above idea by considering a sequence of increasing convex functions $\phi = \{\phi_n\}$ defined on $[0, \infty)$; f is of ϕ -bounded variation on [a, b] if $V_{\phi}(f; a, b) = V_{\phi}(f) = \sup\left(\sum \phi_n(|f(I_n)|\right)$ is finite.

A function f is said to be of $\kappa G\phi$ -bounded variation on [a,b] if there exists a positive constant c such that for any appropriate collection $\{I_n\}$ of nonoverlapping subintervals of [a,b], $\sum \phi_n(|f(I_n)|) \le c \sum \kappa(|I_n|/(b-a))$, where $[a,b] = \bigcup I_n$ and $|I_n|$ is the length of I_n .

The total variation of f over [a, b] is defined by

$$\kappa V_{G\phi}(f) = \kappa V_{G\phi}(f:a,b) = \sup\left(\sum \phi_n(|f(I_n)|) / \sum \kappa(|I_n|/(b-a))\right),$$

where the supremum is taken over all collections $\{I_n\}$ of nonoverlapping subintervals in [a,b]. We denote by $\kappa G\phi BV$ the collection of all functions of $\kappa G\phi$ -bounded variation on [a,b].

A function f is said to be of generalized $\kappa G\phi$ -bounded variation on [a, b], in symbols $f \in G\kappa G\phi BV[a, b]$ if there exists a positive constant c such that for any sequences $\{I_n\}$ of intervals in A,

$$\sum \phi_n(|f(I_n)|) \le c \sum \kappa(|I_n|/(b-a)).$$

where $[a, b] = \bigcup I_n$ and $|I_n|$ is the length of I_n . The total $G\kappa G\phi$ -variation of f over [a, b] is defined by

$$\kappa V_{G\phi}(f,A) = \sup \Big(\sum \phi_n(|f(I_n)|\Big) / \sum \kappa(|I_n|/(b-a))),$$

where the supremum is taken over all collections $\{I_n\}$ of intervals in A[2].

Let $G\kappa G\phi BV_0 = \{f \in G\kappa G\phi BV[a,b] \mid f(a) = 0\}$. For any f in $G\kappa G\phi BV_0$, let us define the norm as in the Orlicz spaces;

$$|||f||| = |||f||_{G\kappa G\phi} = \inf \Big\{ c > 0; G\kappa V_{G\phi}(f) \le 1 \Big\}$$

Then $(G\kappa G\phi BV_0, \| \cdot \|)$ is a Bannach space and $G\kappa G\phi BV$ may be a Bannach space with the norm $\| f - f(a) \| + |f(a)|$.

From now on we will consider $G\phi$ -sequences $\phi_i = \{\phi_{in}\}$ and κ -functions $\kappa_i \in \Delta_{\kappa}$ for i = 1, 2, 3.

Theorem 1. (a) If $\phi_i = \{\phi_{in}\} \in G\phi S \ (i = 1, 2, 3)$ satisfy the inequality

$$R_{R_{\phi_{1n}^{-1}}}(x)R_{R_{\phi_{2n}^{-1}}}(x) \le \alpha R_{R_{\phi_{3n}^{-1}}}(x) \tag{1}$$

for all n and $x \ge 0$, then we have, for all $f \in G\kappa_1 G\phi_1 BV_0$ and $g \in G\kappa_2 G\phi_2 BV_0$,

$$G\kappa_1 G\phi_1 BV_0 \cdot G\kappa_2 G\phi_2 BV_0 \subset G\kappa_3 G\phi_3 BV_0$$

and

$$|||fg||_{G\kappa_3G\phi_3} \leq 2\alpha |||f||_{G\kappa_1G\phi_1} |||g||_{G\kappa_2G\phi_2}.$$

(b) If the inequality (1) in part (a) is replaced by

$$\frac{1}{\alpha} \le R_{\phi_{1n}}(x) R_{(\phi_{3n}^{-1} \circ \phi_{2n})}(y) + R_{\phi_{2n}}(y) R_{(\phi_{3n}^{-1} \circ \phi_{1n})}(x) \tag{2}$$

then, for all $f \in G\kappa_1 G\phi_1 BV_0$ and $g \in G\kappa_2 G\phi_2 BV_0$,

$$G\kappa_1 G\phi_1 BV_0 \cdot G\kappa_2 G\phi_2 BV_0 \subset G\kappa_3 G\phi_3 BV_0$$

and

$$||fg||_{G\kappa_3G\phi_3} \leq 4\alpha ||f||_{G\kappa_1G\phi_1} ||g||_{G\kappa_2G\phi_2}$$

Proof. (a) By the convexity of ϕ_{in} , since the inequality (1) implies the inequality(2), the part (a) holds.

(b) By the inequality (2), since

$$\frac{\sum \phi_{3n}(|f(I_n)g(I_n)|/4\alpha(1+\varepsilon)^2)}{\sum \kappa_3(|I_n|/(b-a))} \le \frac{1}{2}(V_{G\phi_1}(f) + V_{G\phi_2}(g)) \le 1,$$

we have $\kappa_3 V_{G\phi_3}(fg/4(1+\varepsilon)^2) \leq 1$, which implies $|||fg||_{\kappa_3 G\phi_3} \leq 4(1+\varepsilon)^2$, and hence the theorem follows by letting $\varepsilon \to 0$.

Corollary 2. For $\phi_i = \{\phi_{in}\} \in G\phi S \ (i = 1, 2) \ with \int_0^1 R_{\phi_{2n}^{-1}}(t) R_{\phi_{2n}^{-1}}(t) dt < 0$ ∞ , if we let $\phi_{3n}^{-1}(x) = \alpha \int_0^x R_{\phi_{2n}^{-1}}(t) R_{\phi_{2n}^{-1}}(t) dt$ for some constant α , then $\phi_3 =$ $\{\phi_{3n}\}\in G\phi S$, and, for all $f\in G\kappa_1G\phi_1BV_0$ and $g\in G\kappa_2G\phi_2BV_0$,

$$G\kappa_1 G\phi_1 BV_0 \cdot G\kappa_2 G\phi_2 BV_0 \subset G\kappa_3 G\phi_3 BV_0$$

and

$$||fg||_{G\kappa_3G\phi_3} \leq 2\alpha ||f||_{G\kappa_1G\phi_1} ||g||_{G\kappa_2G\phi_2}$$

Proof. Since $R_{\phi_{in}^{-1}}(x)$ (i=1,2) are nonincreasing, it follow that $xR_{\phi_{3n}^{-1}}(x)$ is concave and $\phi_{3n}^{-1}(0) = 0$. By the inequality (1), this is proved.

Lemma 3. For $\phi_i = {\{\phi_{in}\}} \in G\phi S(i = 1, 2, 3)$, the followings are equivalent; for nonnegative $x, y, z \ge 0$,

- (a) $\alpha_1 xy R_{\phi_{3n}}(\alpha_1 xy) \leq x R_{\phi_{1n}}(x) + y R_{\phi_{2n}}(y)$ for some $\alpha > 0$;
- (b) $\lim_{x \to \infty} \sup \left(x R_{\phi_{1n}^{-1}}(x) R_{\phi_{2n}^{-1}}(x) / R_{\phi_{3n}^{-1}}(x) \right) < \infty;$ (c) $\alpha_2 x y z \le x R_{\phi_{1n}}(x) + y R_{\phi_{2n}}(y) + z S_{\phi_{3n}}(z);$

- (d) $\alpha_3 yz S_{\phi_{1n}}(\alpha_3 yz) \leq y R_{\phi_{2n}}(y) + z S_{\phi_{3n}}(z);$
- (e) $\alpha_4 x z S_{\phi_{2n}}(\alpha_4 x z) \le x R_{\phi_{1n}}(x) + z S_{\phi_{3n}}(z)$,

where $\alpha_i > 0$ are some constants and (ϕ_{in}, ψ_{in}) the coresponding complementary pairs.

Proof. Assume that (a) holds. Since $x \leq (\phi_{in}^{-1} \circ \phi_{in})(x)$, if we let $x = uR_{\phi_{1n}^{-1}}(u)$ and $y = uR_{\phi_{2n}^{-1}}(u)$, then (a) implies (b).

Conversely, if (b) holds, then there are $\alpha_1 > 0$ and $u_0 \ge 0$ such that

$$R_{\phi_{1n}^{-1}}(u)R_{\phi_{2n}^{-1}}(u) \leq \frac{u}{\alpha_1}R_{\phi_{3n}^{-1}}(u), u \geq u_0,$$

and letting $x = uR_{\phi_{1n}^{-1}}(u)$ and $y = uR_{\phi_{2n}^{-1}}(u)$ for $x, y \ge max(u_0R_{\phi_{1n}^{-1}}(u_0), u_0R_{\phi_{nn}^{-1}}(u_0))$, this shows that (b) implies (a).

By the property of $G\phi S$, (a) iff (c).

For $x, y, z \ge x_2 \ge 0$, we have the following inequalities;

$$\alpha_2 yz S_{\phi_{1n}}(\alpha_2 yz) = \alpha_2 xyz - x R_{\phi_{1n}}(x) \le y R_{\phi_{2n}}(y) + z S_{\phi_{3n}}(z),$$

$$\alpha_2 xyz - xyz R_{\phi_{1n}}(x) \le \alpha_2 yz R_{\psi_{1n}}(\alpha_2 yz) \le yR_{\phi_{2n}}(y) + zR_{\psi_{3n}}(z),$$

which implies that (c) iff (d). Similarly (c) iff (e).

By Lemma 3, we have the following Theorem 4;

Theorem 4. For $\kappa_i \in \Delta_{\kappa}$ and $\phi_i = \{\phi_{in}\} \in G\phi S(i = 1, 2, 3)$, suppose that one of $(a) \sim (e)$ in Lemma 3 is satisfied. Then for the coresponding complementary pairs (ϕ_{in}, ψ_{in}) there is a constant α_i such that

$$G\kappa_1 G\phi_1 BV_0 \cdot G\kappa_2 G\phi_2 BV_0 \subset G\kappa_3 G\phi_3 BV_0$$

and

$$G\kappa_3 V_{G\phi_3}(fg) \le \frac{1}{\alpha_i} G\kappa_1 V_{G\phi_1}(f) G\kappa_2 V_{G\phi_2}(g)$$

for any $f \in G\kappa_1 G\phi_1 BV_0$ and $g \in G\kappa_2 G\phi_2 BV_0$.

Theorem 5. For $\kappa_i \in \Delta_{\kappa}$, $\phi_i = \{\phi_{in}\} \in G\phi S(i = 1, 2, 3)$ and the coresponding complementary pairs (ϕ_{in}, ψ_{in}) , suppose that one of the following conditions is satisfied:

(i) there is a complementary pair (ϕ_{4n}, ψ_{4n}) such that

$$\phi_{1n} \succ \phi_{3n} \circ \phi_{4n}$$
 and $\phi_{2n} \succ \phi_{3n} \circ \psi_{4n}$

(ii) for the above (ϕ_{4n}, ψ_{4n}) , if $\phi_{3n} \in \Delta'$, suppose that

$$\phi_{1n} \succ \phi_{4n} \circ \phi_{3n}$$
 and $\phi_{2n} \succ \psi_{4n} \circ \phi_{3n}$

Then there is a constant $\alpha \geq 0$ such that, for any $f \in G\kappa_1 G\phi_1 BV_0$ and $g \in G\kappa_2 G\phi_2 BV_0$,

$$G\kappa_1 G\phi_1 BV_0 \cdot G\kappa_2 G\phi_2 BV_0 \subset G\kappa_3 G\phi_3 BV_0$$

and

$$G\kappa_3 V_{G\phi_3}(fg) \le \frac{1}{\alpha} G\kappa_1 V_{G\phi_1}(f) G\kappa_2 V_{G\phi_2}(g)$$

Proof. By (i) and the definition of \succ , we have, for some $\beta > 0$,

$$2\beta x R_{(\phi_{3n} \circ \phi_{4n})}(2\beta x) \le x R_{\phi_{1n}}(x)$$

and

$$2\beta y R_{(\phi_{3n} \circ \psi_{4n})}(2\beta y) \le y R_{\phi_{2n}}(y), x, y \ge x_0 \ge 0.$$

Hence if we let $\alpha = \beta^2$, then

$$\alpha x y R_{\phi_{3n}}(\alpha x y) \leq \beta x R_{(\phi_{3n} \circ \phi_{4n})}(2\beta x) + \beta y R_{(\phi_{3n} \circ \psi_{4n})}(2\beta y)$$

$$\leq x R_{\phi_{1n}}(x) + y R_{\phi_{2n}}(y),$$

which is (a) of Lemma 3.

Next let (ii) be true. Then, for $x, y \ge x_0 \ge 0$,

$$\begin{split} cxy R_{\phi_{3n}}(cxy) & \leq x R_{\phi_{3n}}(x) y R_{\psi_{3n}}(y) \\ & \leq bx R_{\phi_{1n}}(bx) + by R_{\phi_{2n}}(by), x, y \geq x_0 \geq 0, \end{split}$$

for some b, c > 0. If we let $\alpha = \frac{c}{b^2}$, u = bx, v = by and $u_0 = bx_0$, then

$$\alpha uv R_{\phi_{3n}}(\alpha uv) = \alpha b^2 xy R_{\phi_{3n}}(\alpha b^2 xy)$$

$$\leq \frac{u}{b} R_{\phi_{3n}}(\frac{u}{b}) \frac{v}{b} R_{\phi_{3n}}(\frac{v}{b})$$

$$\leq u R_{\phi_{1n}}(u) + v R_{\phi_{2n}}(v),$$

which reduces to (a) of Lemma 3. So the result holds.

Lemma 6. For
$$\phi_1 = \{\phi_{1n}\} \in G\phi S$$
, let $\phi_{2n}(t) = \int_0^t R_{\phi_{1n}}(u) du$, $\phi_{3n}(t) = \int_0^t R_{\phi_{1n}}(u) du$

 $\int_0^t R_{\phi_{2n}}(\tau)d\tau \text{ and } \phi_{in}(0) = 0 \text{ for } i = 1, 2, 3. \text{ Then } R_{\phi_{in}} \text{ and } S_{\phi_{in}} \text{ are strictly increasing continuous functions in } G\phi S \text{ with continuous derivatives which map } [0, \infty) \text{ onto itself and satisfy the followings; for any } t \geq 0,$

$$R_{\phi_{in}}(t) \le 2R_{\phi_{in}}(2t) \tag{3}$$

$$S_{\phi_{in}}(R_{\phi_{in}}(t)) \le t \le 2S_{\phi_{in}}(2R_{\phi_{in}}(t)) \tag{4},$$

$$\phi_1 \sim \phi_2, \phi_2 \sim \phi_3 \tag{5},$$

and the complementary version:

$$S_{\phi_{in}}(t) \le 2S_{\phi_{in}}(2t) \tag{3'}$$

$$R_{\phi_{in}}(S_{\phi_{in}}(t)) \le t \le 2R_{\phi_{in}}(2S_{\phi_{in}}(t))$$
 (4'),

$$\psi_1 \sim \psi_2, \psi_2 \sim \psi_3 \tag{5'}.$$

Proof. Note that $1 \leq tR_{\phi_{in}}^{-1}(t)S_{\phi_{in}}^{-1}(t) \leq 2$, $t \geq 0$. Substituting $t \to tR_{\phi_{in}}(t)$, we get

$$R_{\phi_{in}}(t) \le \psi_{in}^{-1}(\phi_{in}(t)) \le 2R_{\phi_{in}}(t).$$

Hence

$$R_{\phi_{in}}(t) \leq 2R_{\phi_{in}}(t) \leq 2R_{\phi_{in}}(2t)$$

and

$$\psi_{in}(R_{\phi_{in}}(t)) \le \phi_{in}(t) \le \psi_{in}(2R_{\phi_{in}}(t)) \tag{*}.$$

Dividing (*) with $R_{\phi_{in}}(t)$ or with $2R_{\phi_{in}}(t)$, we have

$$S_{\phi_{in}}(R_{\phi_{in}}(t)) \le (\phi_{in}(t)/R_{\phi_{in}}(t)) \le t \le 2S_{\phi_{in}}(2R_{\phi_{in}}(t)).$$

By the continuity of ϕ_{1n} and definitions of $G\phi S$ -sequences, we have

$$\lim_{x \to 0} R_{\phi_{2n}}(t) = \lim_{x \to 0} \phi_{2n}^{'}(t) = \lim_{x \to 0} R_{\phi_{1n}}(t) = 0$$

and

$$\lim_{r \to \infty} R_{\phi_{2n}}(t) = \lim_{r \to \infty} R_{\phi_{1n}}(t) = \infty.$$

Since $\phi_{2n}'(t) = R_{\phi_{1n}}(t) \ge 0$, ϕ_{2n} is strictly increasing and $R_{\phi_{1n}}(t_1) < R_{\phi_{2n}}(t_2)$ if $t_1 < t_2$, which implies that ϕ_{2n} is convex on $[0, \infty)$.

Since $R_{\phi_{in}}(t) \leq \psi_{in}(t) = S_{\psi_{in}}(t)$, each statement of the Lemma has its complementary version; Substituting $t \to \psi_{in}(t)$ and dividing with t,

$$S_{\phi_{in}}(t) \le \phi_{in}^{-1}(\psi_{in}(t)) \le S_{\phi_{in}}(t) \to \phi_{in}(S_{\phi_{in}}(t)) \le \psi_{in}(t) \le \phi_{in}(2S_{\phi_{in}}(t))$$

and

$$R_{\phi_{in}}(t) \leq 2R_{\phi_{in}}(2t)$$
.

Also, $R_{\phi_{in}}(S_{\phi_{in}}(t)) \leq t \leq 2R_{\phi_{in}}(2S_{\phi_{in}}(t))$. By the similar way, other cases are proved

Note that if $\phi = \{\phi_{in}\}$ is a $G\phi S$ -function, then $R_{\phi_{in}}$ and $S_{\phi_{in}}$ are increasing continuous functions in $G\phi S$ with continuous derivatives which map $[0, \infty)$ onto itself and satisfy for any $t \geq 0$ the above inequalities; $(3) \sim (5)$ and $(3') \sim (5')$.

Theorem 7. For
$$\phi_1 = \{\phi_{1n}\} \in G\phi S$$
, let $\phi_{2n}(t) = \int_0^t R_{\phi_{1n}}(u)du$, $\phi_{3n}(t) = \int_0^t R_{\phi_{2n}}(\tau)d\tau$ and $\phi_{in}(0) = 0 (i = 1, 2, 3)$, then we have the followings;

(i) for a κ -function $\kappa_i(i = 1, 2, 3)$ with $\kappa_1 \leq \kappa_2 \leq \kappa_3$,

$$G\kappa_1G\phi_1BV_0 \subset G\kappa_2G\phi_1BV_0 \subset G\kappa_2G\phi_2BV_0 \subset G\kappa_3G\phi_2BV_0 \subset G\kappa_3G\phi_3BV_0$$

and

$$G\kappa_1G\psi_1BV_0 \subset G\kappa_2G\psi_1BV_0 \subset G\kappa_2G\psi_2BV_0 \subset G\kappa_3G\psi_2BV_0 \subset G\kappa_3G\psi_3BV_0$$

(ii) for $\kappa_i \in \Delta_{\kappa}$,

$$G\kappa_1G\phi_1BV_0 \subset G\kappa_3G\phi_1BV_0 \subset G\kappa_3G\phi_2BV_0$$

and

$$G\kappa_2G\psi_1BV_0 \subset G\kappa_3G\psi_1BV_0 \subset G\kappa_3G\psi_2BV_0$$

Proof. By (5) and (5') of Lemma 3, these are proved.

References

- D. S. Cyphert, Generalized functions of bounded variation and their application to the theory of harmonic functions, Dissertation in Math. Vanderbilt Univ., Tennesse, U.S.A., 1982.
- 2. S. K. Kim and J. Kim, Functions of $\kappa\phi$ -bounded variations, Bull. Korean Math. Soc. 23 No.2 (1986) 171-175.
- 3. Pamela B. Pierce and Daniel Waterman, On the invariance of classes ϕBV and ΛBV under composition, Preprint..
- 4. M. J. Schramm, Functions of ϕ -bounded variation and Riemann-Stieltjes integration, Trans. Amer. Math. Soc. **287** (1985) 49-63.

Department of Mathmatics, Hanseo University Seosan, Chungnam 356-820, Republic of Korea

E-mail: jkpark@ hanseo.ac.kr