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FOURIER SERIES ACCELERATION AND

HARDY-LITTLEWOOD SERIES†

REGINA CISZEWSKI, JASON GREGORY, CHARLES N. MOORE∗,
AND JASMINE WEST

Abstract. We discuss the effects of the δ2 and Lubkin acceleration meth-

ods on the partial sums of Fourier Series. We construct continuous, even
Hölder continuous functions, for which these acceleration methods fail
to give convergence. The constructed functions include some interesting
trigonometric series whose properties were investigated by Hardy and Lit-

tlewood.
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1. Introduction

For a measurable function f ∈ L1([−π, π]) the Fourier coefficients of f are
defined by

f̂(k) =
1

2π

∫ π

−π

f(x)e−ikx dx

for each integer k, and the nth partial sum of the Fourier series is given as

Snf(x) =
n∑

k=−n

f̂(k)eikx (1)

For f ∈ L2([−π, π]), Snf → f in L2 and Carleson’s theorem gives a.e. con-
vergence. Theorems of Dini-Lipschitz, Lebesgue, and Dirichlet-Jordan (among
others) give conditions on f for pointwise convergence (see Zygmund [12] for
all of these). In practice, the difficulty is that this convergence can often be
quite slow. This is particularly the case for discontinuous functions with jump
discontinuities. Thus, it is desirable to attempt to find methods to speed this
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convergence. This paper continues investigations began in [1] and [3] to try
to determine properties of functions for which one of the sequence acceleration
methods described below may accelerate the convergence of its Fourier series.

For a numerical sequence {sn} which converges to a finite limit s, we say that
a transformation of the sequence {tn} accelerates the convergence of {sn} if there
exists a positive integer k such that each tn depends only on s1, s2, . . . , sn+k and
so that tn converges to s faster than sn. In this paper we consider two of the
most well-known nonlinear transformations: the δ2 process in which a sequence
sn is transformed to the sequence

ε2(sn−1) = sn − (sn+1 − sn)(sn − sn−1)

(sn+1 − sn)− (sn − sn−1)
(2)

and the Lubkin [7] transform in which the sequence sn is transformed to the
sequence

s∗n+1 = sn +
an+1(1− ρn+1)

1− 2ρn+1 + ρnρn+1
,

where we have set an+1 = sn+1 − sn and ρn = an+1

an
. In either of these we define

the fraction on the right to be zero if the denominator is zero. We have used the
notation ε2(sn−1) for the δ

2 transform as it is one of a family of transformations
εk(sn) which we will discuss below. In the case when the sn are partial sums of a
geometric series, both of these transforms produce a constant sequence which is
the sum of the series. Shanks [8] shows acceleration of convergence using (2) for
partial series which are, in a sense made precise in [8], “nearly geometric.” These
and related transforms are discussed extensively in Brezinski and Redivo-Zaglia
[5] and Sidi [9].

Throughout, we will consider the sequence of partial sums Snf(x) of a Fourier
series as in (1), and apply the δ2 and Lubkin transforms pointwise to obtain the
sequences of functions given by respectively:

ε2(Sn−1f)(x) = Snf(x)

− (f̂(−(n+ 1))e−i(n+1)x + f̂(n+ 1)ei(n+1)x) (f̂(−n)e−inx + f̂(n)einx)

(f̂(−(n+ 1))e−i(n+1)x + f̂(n+ 1)ei(n+1)x) − (f̂(−n)e−inx + f̂(n)einx)

(3)

and

S∗
n+1f(x) = Snf(x) +

(f̂(−(n+ 1))e−i(n+1)x + f̂(n+ 1)ei(n+1)x)(1− ρn+1)

1− 2ρn+1 + ρnρn+1
(4)

where

ρn =
f̂
(
− (n+ 1)

)
e−i(n+1)x + f̂(n+ 1)ei(n+1)x

f̂(−n)e−inx + f̂(n)einx
.

Neither of these transformations will accelerate the convergence of the partial
sums of the Fourier series of a function with a single jump. In fact, we have

Theorem 1.1. Suppose that f ∈ C2([−π, π]) and that f(−π) ̸= f(π).
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(a) (Abebe, Graber, Moore [1]). Consider the sequence ε2(Snf)(x) formed by
applying the δ2 process (3) to the sequence Snf(x). Then ε2(Snf)(x) fails to
converge to f(x) at every x of the form x = 2πa, where a ∈ (− 1

2 ,
1
2 ) is irrational.

(b) (Boggess, Bunch, Moore [3]). Suppose that f ∈ C2([−π, π]) and that f(−π) ̸=
f(π). Consider the sequence S∗

nf(x) formed by applying the Lubkin transform
(4) to the sequence Snf(x). Then S∗

nf(x) fails to converge to f(x) at every x of
the form x = 2πa, where a ∈ (−1

4 ,
1
4 ) is irrational.

For functions as in the hypotheses of the theorems, |f̂(n)| decays like 1
|n| as

n → ±∞ so that these Fourier series converge slowly. This is disappointing, as
these are exactly the types of Fourier series we would like to accelerate. In this
paper, we will investigate similar types of results. We will consider a family of
Hölder continuous functions and show that for each function f in this family,
and each x ∈ [−π, π] the transformed partial sums do not converge to f(x).

2. Convergence of the transformed series

Given a sequence sn → s, set ε
(n)
−1 = 0 and ε

(n)
0 = sn and for k, n = 0, 1, . . .

compute

ε
(n)
k+1 = ε

(n+1)
k−1 +

(
ε
(n+1)
k − ε

(n)
k

)−1

.

This is known as the epsilon algorithm and was introduced by Wynn [10] as
an efficient computational procedure for computing the Shanks transformation.

With this notation, the sequence ε
(n−1)
2 is the δ2 transform of the sequence sn.

Here the sequences ε
(n)
2k are of interest; the sequences with odd lower index are

just intermediate computations. Consider the partial sums of a Fourier series of
a function f :

Snf(x) =
a0
2

+

n∑
j=1

[aj cos(jx) + bj sin(jx)].

Brezinski [4] (see also Wynn [11]) has proposed the following procedure for ac-
celerating the convergence of the sequence Snf(x): Consider the conjugate series

S̃nf(x) =

n∑
j=1

[aj sin(jx)− bj cos(jx)].

Add the conjugate series to Snf(x) to obtain Snf(x) + iS̃nf(x) = Gn(f)(e
ix).

Then Gnf(z) =
n∑

j=0

cjz
j , with c0 = a0

2 and cj = aj − ibj , is the nth partial

sum of the formal series Gf(z) =
∑∞

j=0 cjz
j . Apply the ε algorithm to the

sequence Gnf(z) and take the real part of the resulting ε
(n)
2k to obtain a sequence

Re ε
(n)
2k which we hope will approximate ReGf(eix) = f(x) more quickly than

Snf(x). There is a relationship between the ε algorithm and Padé approximants:

ε
(n)
2k = [n + k/k]G, where [n + k/k]G denotes the unique rational function with
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numerator N of degree n + k and denominator D of degree k such that DG −
N = O(zn+k+k+1) as z → 0. Because of this, Re ε

(n)
2k is likely to converge more

quickly than Snf. Numerical evidence illustrating the acceleration of convergence
is given by Brezinski [4]. Beckermann, Matos, and Wielonsky [2] show that
this method accelerates convergence for functions of the form f = f1 + f2,
where f1 has prescribed discontinuities but is smooth elsewhere, f2 has quickly
decaying Fourier coefficients, and G(f1) = limn→∞ Gn(f1) is a certain type of
hypergeometric function. The authors in both [4] and [2] also note that this
scheme reduces the Gibbs phenomenon.

We follow the idea of adding a series and conjugate series so that the trans-
forms are applied to analytic functions. We will show that the δ2 transform
and the Lubkin transform do not always behave well when applied to analytic
functions. In the remainder of this section, however, we will record a few straight-
forward results about transforms of analytic tunctions, which show that in many
cases, at the very least, the transformed sequence converges to the original limit.

Theorem 2.1. For an integrable function f on [−π, π] let
∑n

k=1 cke
ikx = Snf(x)

denote the partial sums of its Fourier series. Supppose x is a point at which
Snf(x) → f(x).
(a) If the ck all lie on a line through the origin in the complex plane, and x ̸= −π,
π, or 0 then ε2(Snf)(x) converges to f(x).
(b) If there exists a λ < 1 such that | cn+1

cn
| ≤ λ for every n then ε2(Snf)(x) →

f(x).
(c) Suppose there exists β > 1 so that |cn| = 1

nβ for every n. Then ε2(Snf)(x) →
f(x).
(d) Suppose that all the ck lie on a line through the origin, x ̸= −π, π, or 0, and
ρn = cn+1

cn
eix satisfies |ρn+1 − ρn| → 0 as n → ∞. Then S∗

nf(x) → f(x).

(e) Suppose that there exists η <
√
2 − 1 such that |ρn| ≤ η for every n. Then

S∗
nf(x) → f(x).

Note that none of these conclude convergence is accelerated, only that it is not
destroyed. These show the necessity of the intricacy of the examples in Section
3.

Proof. Take the absolute value of the fraction on the right hand side of (3). If
either cn or cn+1 is 0 there is nothing to show. Otherwise simplify to obtain

the expression |cn+1|
|e−ix− cn+1

cn
| . For (a), note that cn+1

cn
is a real number and that

cn+1 → 0, by the Riemann-Lebesgue lemma. For (b), note that the above

expression is bounded by |cn+1|
1−λ → 0. For (c) we have

|cn+1|
|e−ix − cn+1

cn
|
≤ |cn+1|

1− | cn+1

cn
|
=

(n+ 1)−β

1− ( n
n+1 )

β
≤ (n+ 1)−β

cβ
1

n+1

for a constant cβ , depending only on β. The latter expression tends to 0. For
(d) we take the absolute value of the fraction on the right hand side of (4) and



Fourier series acceleration 267

estimate that for sufficiently large n,

|cn+1||1− cn+2

cn+1
eix|

|1− 2 cn+2

cn+1
eix + cn+2

cn
e2ix|

=
|cn+1||1− cn+2

cn+1
eix|

|1− cn+2

cn+1
eix − cn+1

cn
eix + cn+2

cn+1
eix cn+1

cn
eix + ( cn+1

cn
− cn+2

cn+1
)eix|

≤
|cn+1||1− cn+2

cn+1
eix|

|1− cn+2

cn+1
eix||1− cn+1

cn
eix| − |ρn − ρn+1|

=
|cn+1|

|e−ix − cn+1

cn
| − |ρn−ρn+1|

|e−ix− cn+2
cn+1

|

.

We obtain (d) by noting that as in (a), cn+2

cn+1
and cn+1

cn
are real and cn+1 → 0.

For (e) we are assuming that |ρn| ≤ η <
√
2−1 for every n. Take the absolute

value of the fraction on the right hand side of (4):

|cn+1||1− ρn+1|
|1− 2ρn+1 + ρnρn+1|

≤ |cn+1|(1 + η)

1− 2η − η2
,

valid for η <
√
2− 1. The denominator 1− 2η − η2 > 0, and cn+1 → 0, yielding

(e). �

The advantage of these results is that with explicit values of ck we can de-
termine the exact rate at which Snf(x) − ε2(Sn−1f)(x) or Snf(x) − S∗

n+1f(x)
tends to 0. In the next two theorems we will lose this advantage but will obtain
results with wider scope.

Theorem 2.2. Suppose Snf(x) =
∑n

k=1 cke
ikx are the partial sums of the

Fourier series of an integrable and analytic function. Suppose
∑∞

k=1 |ck| < ∞.
Then at almost every x at which Snf(x) → f(x) we have ε2(Snf)(x) → f(x).

Proof. As in the previous theorem, we estimate the fractions on the right hand
side of (3). If either cn or cn+1 is 0 there is nothing to show; otherwise we
estimate

|Snf(x)− ε2(Sn−1f)(x)| =
|cn+1|

|e−ix − cn+1

cn
|
.

For λ > 1, |{x ∈ [−π, π] : 1

|e−ix− cn+1
cn

|
> λ}| ≤ 2 arcsin( 1λ ) < 2π

λ . The latter

bound remains valid for all λ > 0, and thus, for a fixed ε > 0,

|{x ∈ [−π, π] :
|cn+1|

|e−ix − cn+1

cn
|
> ε}| < 2π|cn+1|

ε
.

By the Borel-Cantelli lemma we have that at almost every x, |cn+1|
|e−ix− cn+1

cn
|
≤ ε

eventually. Taking a countable sequence of ε → 0 finishes the proof. �

The next theorem gives the same conclusion for S∗
nf although the estimation

is slightly more difficult. We first need a lemma.
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Lemma 2.3. Suppose that γ, β are nonzero complex numbers. Then for all
λ > 0, ∣∣∣∣{x ∈ [−π, π] :

∣∣∣∣ 1− γeix

1− 2γeix + γβe2ix

∣∣∣∣ > λ}
∣∣∣∣ ≤ 24π

|β|λ
+

9π

λ
.

Proof. Set Eλ = {x ∈ [−π, π] :
∣∣∣ 1−γeix

1−2γeix+γβe2ix

∣∣∣ > λ}. If γ = β, 1−γeix

1−2γeix+γβe2ix =

1
1−βeix and as in the proof of the previous theorem,

∣∣∣ 1
1−βeix

∣∣∣ > λ can happen on

a set of x of measure at most 2π
λ .

If γ ̸= β, for z complex write 1 − 2γz + γβz2 = γβ(z − z1)(z − z2), where

z1, z2 = 1
β ±

√
1
β2 − 1

γβ . Expanding using partial fractions yields:

∣∣∣∣ 1− γz

1− 2γz + γβz2

∣∣∣∣ ≤ ∣∣∣∣ 1− γz1
γβ(z1 − z2)

· 1

z − z1

∣∣∣∣+ ∣∣∣∣ 1− γz2
γβ(z2 − z1)

· 1

z − z2

∣∣∣∣ .
We estimate ∣∣∣∣ 1− γz1

γβ(z1 − z2)

∣∣∣∣ =
∣∣∣∣∣∣
1− γ

β − γ
√

1
β2 − 1

γβ

2γβ
√

1
β2 − 1

γβ

∣∣∣∣∣∣
≤

|1− γ
β |

2|γβ|
√
| 1
β2 − 1

γβ |
+

1

2|β|
=

√
|1− β

γ |+ 1

2|β|
.

Similarly,

∣∣∣∣ 1− γz2
γβ(z1 − z2)

∣∣∣∣ ≤
√
|1− β

γ |+ 1

2|β|
.

(5)

Suppose now that |1− β
γ | ≤ 10. Then

√
|1− β

γ |+1

2|β| ≤
√
10+1
2|β| < 3

|β| and hence,

|Eλ| ≤
∣∣∣∣{x ∈ [−π, π] :

3

|β|
1

|eix − z1|
>

λ

2
}
∣∣∣∣+ ∣∣∣∣{x ∈ [−π, π] :

3

|β|
1

|eix − z2|
>

λ

2
}
∣∣∣∣

≤ 2 · 2π 6

|β|λ =
24π

|β|λ .

Suppose that |1 − β
γ | ≥ 10. Then |βγ | ≥ 9, and hence |γ|2 ≤ 1

9 |βγ|. There are

two possibilities:
Case 1. |γβ| < 1

3 . Then |γ|2 ≤ 1
27 < 1

25 . Then for x ∈ [−π, π],

|1− γeix|
|1− 2γeix + γβe2ix|

≤ 1 + |γ|
1− 2|γ| − |γβ|

<
6
5

1− 2
5 − 1

3

=
9

2
,

so that if λ > 9
2 , Eλ = ∅. For λ ≤ 9

2 , |Eλ| ≤ 2π ≤ 9π
λ .
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Case 2. |γβ| ≥ 1
3 . Then

√
|1− β

γ
|

2|β| =

√
|γ2 − γβ|
2|γβ| ≤

√
|γ|2 + |γβ|
2|γβ| ≤

√
10
9
|γβ|

2|γβ| < 1

and thus, using (5)

|Eλ| ≤

∣∣∣∣∣{x ∈ [−π, π] :
1 + 1

2|β|

|eix − z1|
>

λ

2
}

∣∣∣∣∣+
∣∣∣∣∣{x ∈ [−π, π] :

1 + 1
2|β|

|eix − z2|
>

λ

2
}

∣∣∣∣∣
≤ 2 · 2

(
1 +

1

2|β|

)
2π

λ
=

8π

λ
+

4π

|β|λ
.

�

Theorem 2.4. Suppose Snf(x) =
∑n

k=1 cke
ikx are the partial sums of the

Fourier series of an integrable analytic function. Suppose that
∑∞

k=1 |ck| < ∞.
Then at almost every x at which Snf(x) → f(x) we have S∗

nf(x) → f(x).

Proof. Using the lemma, for ε > 0, and n = 1, 2, 3, . . .∣∣∣∣∣{x ∈ [−π, π] :
|cn+1| |1− cn+2

cn+1
eix|

|1− 2 cn+2

cn+1
eix + cn+2

cn+1

cn+1

cn
e2ix|

> ε}

∣∣∣∣∣
≤ 24π|cn+1|

| cn+1

cn
|ε

+
9π|cn+1|

ε
=

24π|cn|
ε

+
9π|cn+1|

ε
.

We sum over n and apply the Borel-Cantelli theorem to conclude that for a.e. x
at which Snf(x) → f(x), we have |S∗

n+1f(x) − Snf(x)| ≤ ε eventually. Take a
countable sequence of ε → 0 to obtain the conclusion of the theorem. �

3. Analyticity is not enough

From the work of Brezinski [4] and the work of Beckermann, Matos, and
Wielonsky [2] discussed above, we might conjecture that analyticity implies ac-
celeration of convergence. Here, we show by example that this is false; in fact,
even for analytic functions, both transforms may destroy convergence. This is
not to say that analyticity does not play a role – just that it might be a factor
in a subtle way – but that alone, it is not enough for acceleration, and not even
enough for convergence. Our examples show a little more, namely, that Hölder
continuity is also not sufficient to insure convergence. We will first construct
our examples and then show how the partial sums of their Fourier series behave
under transformations (3) and (4).

Theorem 3.1. (Hardy and Littlewood [6]). For 1
2 < β ≤ 3

2 and c > 0 the partial

sums of the series
∑∞

n=1
1
nβ e

i(nx+cn logn) converge uniformly to a function which

is Hölder continuous of order β − 1
2 .

We wish to construct another class of Hölder continuous functions which
we will also use. Although this proof essentially follows that of the theorem
immediately above (see Zygmund [12], Chapter 5, section 4), we include it for
completeness.
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Lemma 3.2. Suppose 1 < α ≤ 2. Set sn(x) =
∑n

k=1 e
i(kx+kα). Then there

exists a constant C, depending only on α, such that (i) sn(x) ≤ Cn
α
2 and (ii)

s′n(x) ≤ Cn1+α
2 .

Proof. Fix x; set g(u) = uα+ux. Then g′′(u) = α(α−1)uα−2 ≥ α(α− 1)bα−2 =
ρ for u ∈ [a, b] so by the van der Corput lemma (see [12], pg. 198), for any integers
a < b,

b∑
k=a

eig(k) ≤ (|g′(b)− g′(a)|+ 2)

(
4
√
ρ
+ 3

)
≤

(
C|bα−1 − aα−1|+ 2

) (
Cb

2−α
2 + 3

)
≤

(
C
(b− a)

a2−α
+ 2

)(
Cb

2−α
2 + 3

)
,

where in each occurence C is a constant depending only on α. Pick N so
that 2N ≤ n < 2N+1. Then for each j, |s2j+1(x) − s2j (x)| ≤ C(2j2−j(2−α) +

2)(C2(j+1) 2−α
2 + 3) ≤ C2

jα
2 . Similarly, |sn(x) − s2N (x)| ≤ C2

(N+1)α
2 . Conse-

quently,

|sn(x)| ≤ 1+
N−1∑
j=0

|s2j+1f(x)−s2jf(x)|+ |snf(x)−s2N f(x)| ≤ C
N∑
j=0

2
jα
2 ≤ Cn

α
2 .

Taking the derivative and summing by parts gives:

|s′n(x)| =

∣∣∣∣∣
n∑

k=1

ikei(kx+kα)

∣∣∣∣∣ =
∣∣∣∣∣−

n−1∑
k=1

sk(x) + nsn(x)

∣∣∣∣∣ ≤ Cn1+α
2 .

�

Theorem 3.3. If 1 < α ≤ 2, β > 1
2 , and 0 < β− α

2 < 1, then
∑∞

n=1
1
nβ e

i(nx+nα)

is the Fourier series of a function which is Hölder continuous of order β − α
2 .

Proof. Set f(x) =
∑∞

n=1
1
nβ e

i(nx+nα), which is in L2, and for N ≥ 1, let SNf(x)
denote the Nth partial sum of this series. Summing by parts yields

SNf(x) =

N∑
n=1

1

nβ
ei(nx+nα) =

1

Nβ
sN (x) +

N−1∑
n=1

(
1

nβ
− 1

(n+ 1)β

)
sn(x),

and hence for M > N,

|SMf(x)− SNf(x)| ≤ |sM (x)|
Mβ

+
|sN (x)|
Nβ

+
M−1∑
n=N

(
1

nβ
− 1

(n+ 1)β

)
|sn(x)|

≤ M
α
2

Mβ
+

N
α
2

Nβ
+ C

M−1∑
n=N

n
α
2

nβ+1
≤ C

Nβ−α
2
.

Consequently, SNf(x) converges uniformly so that f is continuous.
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Let h > 0. Summing by parts gives f(x) =
∑∞

n=1

(
1
nβ − 1

(n+1)β

)
sn(x). Let

N be the greatest integer ≤ 1
h . Then

|f(x+ h)− f(x)| ≤
N∑

n=1

∣∣∣∣ 1

nβ
− 1

(n+ 1)β

∣∣∣∣ |sn(x+ h)− sn(x)|

+

∞∑
n=N+1

∣∣∣∣ 1

nβ
− 1

(n+ 1)β

∣∣∣∣ |sn(x+ h)− sn(x)| = I + II.

Using the mean value theorem and (ii) of Lemma 3.2, we can estimate:

I ≤ C
∑N

n=1
1

nβ+1n
α
2 +1h ≤ ChN−β+α

2 +1 ≤ Chβ−α
2 . We use (i) of Lemma 3.2 to

estimate II ≤ C
∑∞

n=N+1
1

nβ+1n
α
2 ≤ C 1

Nβ−α
2
= Chβ−α

2 . �

The next theorem gives conditions which guarantee that ε2(Snf)(x) fails to
converge at any x.

Theorem 3.4. Suppose f is an integrable function on [−π, π], analytic on the

interior of the unit disk, and let SNf(x) =
∑N

n=0 cne
inx denote the partial sums

of its Fourier series. For each n write cn = ane
iθn where an ≥ 0, and θn is real.

For n ≥ 1 set γn = θn − θn−1. Suppose that there exists a constant M such that
(a) |1− an

an+1
| < Man for every n, and

(b) γn → ∞ and |γn+1 − γn| < Man for every n. Then ε2(Snf)(x) fails to
converge at any x.

Proof. By (3)

|Snf(x)− ε2(Sn−1f)(x)| =
|cn|

|eix − cn
cn+1

|
=

an
|eix+γn+1 − an

an+1
|
.

We consider the denominator∣∣∣∣ei(x+θn+1−θn) − an
an+1

∣∣∣∣ ≤ ∣∣∣ei(x+θn+1−θn) − 1
∣∣∣+ ∣∣∣∣1− an

an+1

∣∣∣∣ (6)

and estimate each term. The second term is bounded by Man for every n by
hypothesis. To estimate the first term, consider a fixed x ∈ [−π, π]. Then for
each positive integer l, there exists k such that x+γk ≤ 2lπ but x+γk+1 > 2lπ.
Then

|x+ γk − 2lπ| < |x+ γk+1 − (x+ γk)| = |γk+1 − γk| < Mak.

so that ∣∣∣ei(x+γk) − 1
∣∣∣ = ∣∣∣ei(x+γk) − ei2πl

∣∣∣ ≤ |x+ γk − 2πl| ≤ Mak.

Since γk = θk+1 − θk this immediately gives the estimate |ei(x+θk+1−θk) − 1| <
Mak, which by (6) immediately leads to

1

2M
≤ |ak|

|ei(x+θk+1−θk) − ak

ak+1
|
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for an infinite number of k . �

Example 1. Consider the Hardy-Littlewood series
∑∞

n=1
1
nβ e

i(nx+cn logn) with
1
2 < β ≤ 1 and c > 0. Here an = 1

nβ and γn = cn log n − c(n − 1) log(n − 1).
Then ∣∣∣∣1− an

an+1

∣∣∣∣ =
∣∣∣∣∣1−

(
n+ 1

n

)β
∣∣∣∣∣ ≤ Cβ

n
≤ Cβ

nβ
= Cβan. (7)

Also, γn = cn log(1+ 1
n−1 )+ c log(n−1) → ∞ as n → ∞ and by the mean value

theorem, there exists ξ between n− 1 and n+ 1 so that

|γn+1−γn| = c|(n+1) log(n+1)+(n−1) log(n−1)−2n log n| ≤ 2c

ξ
≤ C

nβ
= Can.

Thus, the Hardy-Littlewood series satisfies the hypotheses of the theorem, and
hence ε2(Snf)(x) fails to converge at any x.

Similarly consider the series
∑∞

n=1
1
nβ e

i(nx+nα) of Theorem 3.3 and suppose
1
2 < β ≤ 1, 1 < α ≤ 2, 0 < β − α

2 < 1 and α + β ≤ 2. Here again an = 1
nβ

which satisfies (7). Now γn = nα − (n − 1)α and estimating just as with the
Hardy-Littlewood series gives |γn+1 − γn| ≤ Cα

n2−α ≤ Cα

nβ = Cαan. The theorem
applies and we conclude that ε2(Snf)(x) fails to converge at any x

Example 2. In a similar way we show that there exists functions f which
are analytic on the unit disk, Hölder continuous on the boundary such that the
transformed sums S∗

nf(x) diverge at every point. We consider the modification of
the Hardy-Littlewood series given by f(x) =

∑∞
n=1

1
nβ e

iθneinx, where 1
2 < β ≤ 1

and for n = 1, 2, 3, . . . , θn = n log n, for n even and θn = θn−1+θn+1

2 for n odd.
(Put θ0 = 0.) By breaking the sum into even and odd terms, we can write f as a
sum of two functions, each of which is represented by a series that is essentially
the Hardy-Littlewood series itself. We conclude that f is Hölder continuous of
order β − 1

2 . In this case we have cn = ane
iθn with an = 1

nβ and γn = θn − θn−1

satisfies limn→∞ γn = ∞ and γn+2 = γn+1 if n is even. Then

|Snf(x)− S∗
n+1f(x)| =

an+1|1− an+2

an+1
ei(x+γn+2)|

|1− 2an+2

an+1
ei(x+γn+2) + an+2

an
ei(2x+γn+2+γn+1)|

. (8)

We estimate the denominator of this expression when n is even (so γn+1 = γn+2):

|1− 2
an+2

an+1
ei(x+γn+2) +

an+2

an
ei(2x+γn+2+γn+1)|

≤
∣∣∣∣1− an+2

an+1
ei(x+γn+1) − an+1

an
ei(x+γn+1) +

an+2

an
e2i(x+γn+1)

∣∣∣∣+ ∣∣∣∣an+1

an
− an+2

an+1

∣∣∣∣
=

∣∣∣∣1− an+2

an+1
ei(x+γn+2)

∣∣∣∣ ∣∣∣∣1− an+1

an
ei(x+γn+1)

∣∣∣∣+ ∣∣∣∣an+1

an
− an+2

an+1

∣∣∣∣ = I + II.
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Noting that an+1 = (n+1)−β and |1− an+2

an+1
ei(x+γn+2)| ≥ |1− an+2

an+1
| = |1−(n+1

n+2
)β | ≥

cβ
n+2

, (where cβ is a constant depending only on β) yields

II =

∣∣∣∣an+1

an
− an+2

an+1

∣∣∣∣ =
∣∣∣∣∣
(

n

n+ 1

)β

−
(
n+ 1

n+ 2

)β
∣∣∣∣∣

≤ C

(n+ 1)(n+ 2)
≤ Can+1

∣∣∣∣1− an+2

an+1
ei(x+γn+2)

∣∣∣∣ .
To estimate I, we argue as in the proof of Theorem 3.4. We first estimate:

|1− an+1

an
ei(x+γn+1)| ≤ |1− an

an+1
|+ |1− ei(x+γn+1)| = Ia + Ib.

Then Ia = |1 −
(
n+1
n

)β | ≤ Cβ

n ≤ Can+1. To estimate Ib, fix x ∈ [−π, π]. Since
γn → ∞, then for each positive integer l there exists a k such that x+ γk ≤ 2lπ
but x+ γk+1 > 2lπ, (here necessarily k is even) and consequently,

Ib = |e2πl − ei(x+γk+1)| ≤ |x+ γk+1 − 2lπ| ≤ |γk+1 − γk|

= |θk+1 + θk−1 − 2θk| = |θk+2 + θk
2

+
θk + θk−2

2
− 2θk| = |θk+2 + θk−2

2
− θk|

=

∣∣∣∣ (k + 2) log(k + 2) + (k − 2) log(k − 2)

2
− k log k

∣∣∣∣ ≤ 4

ξ
≤ C

k
≤ Cak+1

where ξ is between k − 2 and k + 2 and C is an absolute constant.
Combining the estimates for Ia and Ib yields |1− ak+1

ak
ei(x+γk+1)| ≤ Cak+1 for

an infinite number of k. Then for these k, I ≤ Cak+1|1− ak+2

ak+1
ei(x+γk+2)|, which

combined with the estimate for II gives an estimate for the denominator in the
fraction on the right hand side of (8). Consequently, there exists a constant
C such that for each x ∈ [−π, π], there are an infinite number of k for which
|Skf(x)− S∗

k+1f(x)| ≥ 1
C .

Similarly, fix α and β which satisfy 1 < α ≤ 2, 1
2 < β ≤ 1, α + β ≤ 2, and

0 < β− α
2 < 1, and consider a series of the form f(x) =

∑∞
n=1

1
nβ e

iθneinx, where

for n = 1, 2, 3, . . . we put θn = nα if n is even and θn = θn+1+θn−1

2 if n is odd.
Following the arguments of the above example shows that f is a function which
is Hölder continuous of order β − α

2 and that there exists an absolute constant

so that for each x ∈ [−π, π], |S∗
k+1f(x)− Skf(x)| ≥ 1

C for an infinite number of
k.

In Figure 1, we consider the series
∑∞

n=1
1

n.75 e
i(nx+n1.2), and graph the first 30

terms of the real part of the series, S30f , as well as the real part of ε2(S29f). In
this case, using the notation of Example 1, we have that γ30 = 30(1.2)−29(1.2) ≈
2.36 and γ31 = 31(1.2) − 30(1.2) ≈ 2.38 so that for x between −2.36 and −2.38,
x + γ30 ≤ 0, and x + γ31 > 0, and the difference |S30f(x) − ε2(S29f)(x)| is
bounded below.

In Figure 2, we consider the series from Example 2 with β = .75: f(x) =∑∞
n=1

1
n.75 e

iθneinx. The graphs represent the real parts of S30f and S∗
31f. Here,
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Figure 1. Real parts of S30f and ε2(S29f) for f(x) =
∑∞

n=1
1

n.75 e
i(nx+n1.2)

using the notation of that example, γ30 = 30 log(30)−29 log(29) ≈ 4.38, whereas
γ31 = θ32+θ30

2 −θ30 = (32 log(32)−30 log(30))/2 ≈ 4.43. Thus, if x ∈ (1.85, 1.90),
(roughly) x + γ30 ≤ 2π and x + γ31 > 2π, so as computed in the example, the
quantity |S30f(x)− S∗

31f(x)| is bounded below.

4. Conclusions

Both the δ2 process and Lubkin transform are known to accelerate many types
of numerical sequences, but little is known about their behavior when applied to
Fourier series. The work of Beckermann, Matos, andWielonsky [2] shows that for
a certain type of function, the δ2 process can be used to accelerate convergence.
In this paper, we have shown that for a wide variety of functions, the δ2 process
and Lubkin transform do not destroy the convergence of the partial sums, but
we haven’t proved they actually accelerate convergence.

These transforms destroy convergence in the case of functions which are
smooth with a single jump discontinuity, and, as we have shown here, there are
functions which are analytic on the unit disk, whose Fourier series are Hölder con-
tinuous functions, for which these methods destroy convergence at every point.

Naturally, it would be interesting to know necessary and sufficient conditions
on a function so that either of these methods accelerate the convergence of its
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Figure 2. Real parts of S30f and S∗
31f for f(x) of Example 2,

with β = .75

Fourier series, but given what we have just noted, it is not at all evident what
such conditions may be. It would also be interesting to develop a transform
which could accelerate the convergence of the Fourier series of functions which
need it the most, e.g. functions with jump discontinuities.
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