• Title/Summary/Keyword: $F_1$ plants

Search Result 704, Processing Time 0.025 seconds

Salt Tolerance in Transgenic Pea (Pisum sativum L.) Plants by P5CS Gene Transfer

  • Najafi F.;Rastgar-jazii F.;Khavari-Nejad R. A.;Sticklen M.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.233-240
    • /
    • 2005
  • Slices of embryonic axis of mature pea (Pisum sativum L. cv. Green Arrow) seeds were used as explant. Transformation of explants was done via Agrobacterium tumefaciens bearing vector pBI-P5CS construct. The best results for inoculation of explants were obtained when they were immersed for 90 s at a concentration of $6{\times}10^8$ cell $ml^(-1)$ of bacterial suspension. Transformed pea plants were selected on $50\;mg\;l^(-1)$ kanamycin and successful transformants were confirmed by PCR and blotting. Transgenic plants were further analyzed with RT-PCR to confirm the expression of P5CS. Transgenic plants and non-transgenic plants were treated with different concentrations of NaCl 0 (control), 100, 150 and 200 mM in culture medium. Measurement of proline content indicated that transgenic plants produced more amino acid proline in response to salt in comparison with non-transgenic plants. Photosynthetic efficiency in transgenic plants under salt-stress was more than that of non-transgenic plants.

Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1

  • Zang, Yun-Xiang;Kim, Jong-Hoon;Park, Young-Doo;Kim, Doo-Hwan;Hong, Seung-Beom
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.472-478
    • /
    • 2008
  • Three Arabidopsis cDNAs, MAM1, CYP79F1, and CYP83A1, required for aliphatic glucosinolate biosynthesis were introduced into Chinese cabbage by Agrobacterium tumefaciens-mediated transformation. The transgenic lines overexpressing MAM1 or CYP83A1 showed wild-type phenotypes. However, all the lines overexpressing CYP79F1 displayed phenotypes different from wild type with respect to the stem thickness as well as leaf width and shape. Glucosinolate contents of the transgenic plants were compared with those of wild type. In the MAM1 line M1-1, accumulation of aliphatic glucosinolates gluconapin and glucobrassicanapin significantly increased. In the CYP83A1 line A1-1, all the aliphatic glucosinolate levels were increased, and the levels of gluconapin and glucobrassicanapin were elevated by 4.5 and 2 fold, respectively. The three CYP79F1 transgenic lines exhibited dissimilar glucosinolate profiles. The F1-1 line accumulated higher levels of gluconapoleiferin, glucobrassicin, and 4-methoxy glucobrassicin. However, F1-2 and F1-3 lines demonstrated a decrease in the levels of gluconapin and glucobrassicanapin and an increased level of 4-hydroxy glucobrassicin.

Impact of Physico·chemical Properties of Root Substrates on Growth of 'Seolhyang' Strawberry Daughter Plants Occurred through Bag Culture of Mother Plants (포트 충전용 상토의 물리·화학성이 플라스틱백 재배를 통해 발생한 '설향' 딸기의 자묘 생육에 미치는 영향)

  • Choi, Jong-Myung;Park, Ji-Young;Yoon, Moo-Kyung
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.964-972
    • /
    • 2010
  • Objective of this research was to determine the influence of physico.chemical properties of root substrates on growth of daughter plants that were developed through plastic bag cultivation of mother plants in 'Seolhyang' strawberry propagation. Six different formulations of root substrates for daughter plant cultivation were peatmoss + vermiculite (5:5, A), peatmoss + perlite (7:3, B), coir dust + perlite (7:3, C), coir dust + peatmoss + perlite (3.5:3.5:3.0, D), rice-hull + coir dust + perlite (2:7:1, E), and rice hull + coir dust (3:7, F). The 10 cm plastic pots filled with formulated substrates were located near the plastic bag where mother plants were growing. Then the runners and daughter plants originated from mother plants were fixed on each root substrate filled into 10 cm plastic pot and daughter plants were grown in the plastic pots. The container capacity and air space showed big differences among substrates tested. The substrates E and F had the less container capacity and the higher air space than other substrates tested. This indicates that the two substrates would have difficulties in water managements during the raising of daughter plants. The substrates of A, B, and D which contained peatmoss in formulation had higher nitrogen concentrations than those containing coir dust or rice hull. The substrates of E and F which contained rice hull had lower nitrogen, phosphorus and potassium concentrations than those that contained coir. The crown diameters of daughter plants grown in substrate A were around 13 mm which is thicker than those grown in other substrates. The fresh weights of daughter plants grown in A substrate were the heaviest followed by C, F, D, E, and B. The dry weight of daughter plants showed similar tendency to those of fresh weight. The daughter plants which had heavy fresh and dry weights and thick crown diameter are considered good seedlings. Based on this justification, the substrates of A, C and F are acceptable for daughter plant growth of 'Seolhyang' strawberry.

A Study on the Evaluation of Barley Hybrids in their Early Generation (보리의 교배조합 검정연구)

  • 김흥배
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.4
    • /
    • pp.386-391
    • /
    • 1988
  • Five barley crosses and their progenies (F$_2$, F$_3$, and F$_4$) were evaluated the potentiality of hybrid populations to segregate superior yielders in later generation. Four characters used for evaluation were number of spike, number of grain, spike weight and grain weight per plant. Superiority value (Y) of number of spike was best in SB76588${\times}$SB72648 and average of superior plants in F$_4$, was excellent in this cross. Milyang 6${\times}$Suwon 203 showed high Y value and average of F$_4$ superior plants in the number of grain. Spike weight showed the highest Y value and excellent averages of superior plant in Milyang 6${\times}$Suwon 203. Superiority value of grain weight per plant coincided with average of F$_4$ superior plants in 3 crosses and SB76588${\times}$SB72648 was the best among the crosses.

  • PDF

Development of Risk Based Inspection (RBI) Procedures for Optimized Preventive Maintenance (PM) Planning of Energy Plants (에너지플랜트의 최적 예방점검을 위한 위험도기반 설비 관리(RBI) 절차 개발)

  • Choi, Jeong-Woo;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.74-80
    • /
    • 2011
  • Recently, needs for extending remaining life and integrity of the aged energy plants are increased since the most domestic plants have been operated over 10 years. This need makes RAM (reliability, availability and maintainability) of the plant become more significant. RBI (risk based inspection) is main technology to increase RAM in energy plants. So far RBI has been developed mainly in the field of process plants (chemical/refinery), underground buried pipelines or nuclear power plants. However, the existing RBI procedure is limited mainly to process plants, it need to be extended to the other energy plants such as fossil power plants. In this study, a general RBI procedure for optimized PM (preventive maintenance) is proposed for various energy plants.

Biological Control of Fusarium Wilt by Antagonistic Microorganism in Greenhouse Grown Cucumber Plants (오이의 온실재배에서 발생하는 위조병의 미생물학적 제어)

  • Cho, Jung-Il;Cho, Ja-Yong
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.1
    • /
    • pp.101-114
    • /
    • 2004
  • This study was carried out to clarify the effects of antagonistic microorganism, Bacillus sp. JC181 isolated from the greenhouse soil grown cucumber plants on the growth inhibition of plant pathogen, fusarium wilt (Fusarium oxysporum) occurred in cucumber plants in greenhouse. Antagonistic bacterial strains were isolated and were investigated into the antifungal activity of the antagonistic microorganism against fusarium wilt. Screened fourteen bacterial strains which strongly inhibited F. oxysporum were isolated from thc greenhouse soil grown cucumber plants, and the best antagonistic bacterial strain designated as JC181, was finally selected. Antagonistic bacterial strain JC181 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. JC181 showed 58.2% of antifungal activity against the plant pathogen growth of F. oxysporum. By the bacterialization of culture broth and heated filtrates of culture broth, Bacterial strain, Bacillus sp. JC181. showed 91.2% and 260% of antifungal activity against F. oxysporum, respectivrly.

  • PDF

OsF3H Gene Increases Insect Resistancy in Rice through Transcriptomic Changes and Regulation of Multiple Biosynthesis Pathways

  • Rahmatullah Jan;Saleem Asif;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.287-287
    • /
    • 2022
  • In this study, we analyze RNA-seq data from OxF3Hand WT at several points (Oh, 3 h, 12 h, and 24 h) after WBPH infection. A number of the genes were further validated by RT-qPCR. Results revealed that highest number of DEGs (4,735) between the two genotypes detected after 24 h of infection. Interestingly, many of the DEGs between the WT and OsF3H under control conditions were also found to be differentially expressed in OsF3H in response to WBPH infestation. These results indicate that significant differences in gene expression between the "OxF3H" and "WT" exist as the infection time increases. Many of these DEGs were related to oxidoreductase activity, response to stress, salicylic acid biosynthesis, metabolic process, defense response to pathogen, cellular response to toxic substance, and regulation of hormones level. Moreover, genes involved in salicylic acid (SA) and Ethylene (Et) biosynthesis were upregulated in OxF3H plants while jasmonic acid (JA), Brassinosteroid (Br), and abscisic acid (ABA) signaling pathways were found downregulated in OxF3H plant during WBPH infestation. Interestingly, many DEGs related to pathogenesis such as OsPR1, OsPR1b, NPR1, OsNPR3 and OsNPR5 were found significantly upregulated in OxF3H plants. Additionally, genes related to MAPKs pathway, and about 30 WRKY genes involved in different pathways were found upregulated in OxF3H plants after WBPH infestation. This suggests that overexpression of the OxF3H gene leads to multiple transcriptomic changes and impact plant hormones, pathogenic related and secondary metabolites related genes and enhancing the plant resistance to WBPH infestation.

  • PDF

Double Mutations in eIF4E and eIFiso4E Confer Recessive Resistance to Chilli Veinal Mottle Virus in Pepper

  • Hwang, JeeNa;Li, Jinjie;Liu, Wing-Yee;An, Song-Ji;Cho, Hwajin;Her, Nam Han;Yeam, Inhwa;Kim, Dosun;Kang, Byoung-Cheorl
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.329-336
    • /
    • 2009
  • To evaluate the involvement of translation initiation factors eIF4E and eIFiso4E in Chilli veinal mottle virus (ChiVMV) infection in pepper, we conducted a genetic analysis using a segregating population derived from a cross between Capsicum annuum 'Dempsey' containing an elF4E mutation ($pvr1^2$) and C. annuum 'Perennial' containing an elFiso4E mutation (pvr6). C. annuum 'Dempsey' was susceptible and C. annuum 'Perennial' was resistant to ChiVMV. All $F_1$ plants showed resistance, and $F_2$ individuals segregated in a resistant-susceptible ratio of 166:21, indicating that many resistance loci were involved. Seventy-five $F_2$ and 329 $F_3$ plants of 17 families were genotyped with $pvr1^2$ and pvr6 allele-specific markers, and the genotype data were compared with observed resistance to viral infection. All plants containing homozygous genotypes of both $pvr1^2$ and pvr6 were resistant to ChiVMV, demonstrating that simultaneous mutations in elF4E and eIFiso4E confer resistance to ChiVMV in pepper. Genotype analysis of $F_2$ plants revealed that all plants containing homozygous genotypes of both $pvr1^2$ and pvr6 showed resistance to ChiVMV. In protein-protein interaction experiments, ChiVMV viral genome-linked protein (VPg) interacted with both eIF4E and eIFiso4E. Silencing of elF4E and eIFiso4E in the VIGS experiment showed reduction in ChiVMV accumulation. These results demonstrated that ChiVMV can use both eIF4E and eIFiso4E for replication, making simultaneous mutations in eIF4E and eIFiso4E necessary to prevent ChiVMV infection in pepper.

Relationship Between Flavonoid Structure and Inhibition of Farnesyl Protein Transferase

  • Kang, Hyun-Mi;Kim, Jong-Han;Son, Kwang-Hee;Yang, Deok-Cho;Kwon, Byoung-Mog
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.367.1-367.1
    • /
    • 2002
  • Flavo.no.ids are a diverse group of phytqchemicals that are produced by various plants in high quantities. Dietary flavonoids in edible plants can be further subdivided into. several structural groups. The large number of compounds arises from various combinations of multiple hydroxyl and methoxyl groups substituting the basic flavonoid skeleton. The chemopreentive activity of flavonoids is dependent on their structural features. (omitted)

  • PDF

Aphids, Plants nd Other Organisms

  • Eastop, V.F.
    • Korean journal of applied entomology
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • The relationships between aphids, plants, other organisms and some physical components of the environment are reviewed. Aspects considered include year cycles, polymorphism fecundity, relationship of different groups of aphids with particular groups of plants, honeydew, alarm pheromones, aposematic colouring, camouflage, colour variation within species, morphological variation within species, multivariate analysis and problems of its interpretation, parasitism, stridulating mechanisms, predators, coevolution of plants and aphids, plant galls, trapping aphids and the interpretation of trap catches, an curation of aphid collections. References are given to sources of information about aphids, with special reference to the Korean fauna.

  • PDF