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Abstract

Slices of embryonic axis of mature pea (Pisum sativum L.
cv. Green Arrow) seeds were used as explant. Transforma-
tion of explants was done via Agrobacterium tumefaciens
bearing vector pBI-P5CS construct. The best results for
inoculation of explants were obtained when they were
immersed for 90 s at a concentration of 6 x 10° cell
ml” of bacterial suspension. Transformed pea plants
were selected on 50 mg I kanamycin and successful
transformants were confirmed by PCR and blotting.
Transgenic plants were further analyzed with RT-PCR to
confirm the expression of P5CS. Transgenic plants and
non-transgenic plants were treated with different concent-
rations of NaCl 0 (control), 100, 150 and 200 mM in
culture medium. Measurement of proline content indicated
that transgenic plants produced more amino acid proline
in response to salt in comparison with non-transgenic
plants. Photosynthetic efficiency in transgenic plants under
salt-stress was more than that of non-transgenic plants.
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Introduction

Salinity in soil or water is one of the major stresses and,
especially in arid and semi-arid regions, can severely limit
crop production (Shannon 1998). The deleterious effects of
salinity on plant growth are associated with (Grime 1979)
low osmotic potential of soil solution (water stress), (Shannon
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1998) nutritional imbalance, (Ashraf 1994) specific ion effect
(salt stress), or a combination of these factors (Ashraf 1994,
Marschner 1995). All of these cause adverse pleiotropic
effects on plant growth and development at physiological
and biochemical levels (Levitt 1980; Munns 2002) and at
the molecular level (Winicov 1998; Tester and Davenport
2003). In recent decades, considerable improvements in
salinity tolerance have been made in crop species through
conventional selection and breeding techniques (Shannon
1998; Ashraf 1994; Noble et al. 1984; Ashraf 2002).

Transgenic plants allow the targeted expression of drought-
related genes in vivo and are therefore an excellent system
to assess the function and tolerance conferred by the
encoded proteins. The accumulation of low- molecular weight
metabolites that act as osmoprotectants is a widespread
adaptation to dry, saline, and low-temperature conditions in
many organisms (Ingram and Bartels 1996). In engineering
plants that synthesize protective osmolytes, microorganisms
appear to be useful sources for genes. Transgenic tobacco
plants that synthesize and accumulate the sugar alcohol
mannitol have been obtained by introducing a bacterial
gene that encodes mannitol 1-phosphate dehydrogenase.
Plants producing mannitol showed increased salt tolerance
(Tarczynski et al., 1993).

Proline accumulation is a widespread response of higher
plants, algae, animals and bacteria to low water potential
(Delauney and Verma 1993; Samaras et al. 1995). In plants,
proline is synthesized from glutamate during osmotic stress
and nitrogen limitation. The biosynthetic pathway from glu-
tamate is thought to be a reaction in which glutamate is
converted to A1-pyrroline-5-carboxylate (P5C) via glutamic-
7 - semialdehyde (GSA) by P5C synthetase (P5CS), and
P5C is converted to proline by P5C reductase (P5CR)
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(Delauney and Verma 1993). Proline accumulation is achieved
by upregulating the gene for P5CS, a key enzyme in proline
biosynthesis (Delauney and Verma 1993; Savoure et al.
1995 : Peng et al. 1996; Igarashi et al. 1997, Yoshiba et al.
1995, 1997). Proline overproduction, induced by overexpression
of the P5CS gene of Vigna aconitifolia, conferred osmotolerance
in transgenic tobacco (Kavi Kishor et al. 1995; Verma and
Hong 1996; Verma 1999).

Peas are an important model plant for various physiological,
biochemical and genetic studies. In addition, they represent
the fourth most important legume crop in the world and are
therefore a target for crop improvement (Casey and Davies
1993). Here we report the production of transgenic pea
plants which produced a high level of the proline. Also the
transgenic pea plants were more resistant to salinity compared
with non- transgenic plants.

Materials and Methods

Plant material

Mature pea (Pisum sativum L. cv. Green Arrow) seeds
were sterilised in 70% (v/v) ethanol (1 min) followed by 1%
(wiv) sodium hypochorite (20 min) and washed five times
with sterile distilled water. The seeds were soaked overnight
in ‘an ehrlenmeyer flask containing 100 ml of sterile distilled
water, in 4°C. After imbibition, seeds were used for trans-
formation procedures.

Bacterial strain and vector

The full length of Arabidopsis PSCS ¢cDNA was synthesized
and cloned (by our group) in the binary vector pBIl121
(Construct S) (Figure 1A). To verify the intactness of construct
S, its mobility in agarose gel was compared with pBl121
(Figure 1B). The mass difference between construct S and
pBl121 indicates positioning of exogenous fragment (P5CS).
For further certification PCR and dot blot were applied
(Figures 1C and 2B). Construct S was transferred into
Agrobacterium tumefaciens strain LBA4404. Besides this
construct (driving by cauliflower mosaic virus 35S promoter
and the nopaline synthase nos terminator) has gus reporter
gene and kanamycin resistance marker. Growth of the
Agrobacterium tumefaciens containing pBI-P5CS for inoculation
was made by shaking in 10 ml Luria berth (LB) supplemented
with 50 mg I'' kanamycin for 24 h at 28°C. From this culture
of Agrobacterium 100 x| was added to each of the two
flasks containing 10 ml LB without antibiotic; Agrobacterium
was grown at 28°C until optical densities at 600 nm was
reached to 0.5 and 1. These densities corresponded to

about 6 10° cell ml™ and 12x 10% cell mI" respectively.
Transformation procedure
Transformation procedure was done as described by

Schroeder et al. (1993). Seeds after imbibition were removed
from flask and testae excised. The explants were cut from the

E =
TH
et B34
5&° o~
B
C

Figure 1. (A) Restriction map of the plasmid pBI-P5CS used for
producing transgenic plants. Double strand cDNA of P5CS derived
from Arabidopsis thaliana was placed between the CaMV35S
promoter and gus gene. The resulting construct (construct S) was
inserted into the BamH1 site of vector pBI121. (B) Comparative
electrophoretic movement of pBI-P5CS (construct S) and pB!-121
without PSCS in a 1% agarose gel stained with ethidium bromide.
Lane1; pBI-121 without P5CS. Lane2; pBI-P5CS (construct S). (C)
The 765 bp PCR product of Arabidopsis thaliana P5CS by applying
primers. Lane1; molecular size marker gene ruler 50 bp (Roche).

* Lane 2; PCR Product of pBI-P5CS (construct S). Lane 3; PCR

product of pBI121.



F. Najafi et al. 235

embryonic axis of pea seeds. One cotyledon was removed
from each seed and the root end was cut off. The remainder
of the axis was sliced longitudinally into three segments,
using a scalple blade wetted with suspension of Agrobacterium
tumefaciens. Inoculation of slices of embryonic axis was
done for each concentration in different times: 30s, 60s, 90s
and 120s. Wet segments were transferred on B5 medium
(Brown and Atanassov, 1985) and cultured under controlled
environment (17h light period, 300 1 mol quanta m? s™, day/
night : temperatures of 24/18°C), for three days. Also in this
study transgenic pea plants were produced with Agrobacterium
fumefaciens bearing vector pBl121 alone (without P5CS) as
control plants.

Plant regeneration

After 3 days of co-cultivation, explants were washed three
times with sterile water containing 500 mg I'' of cefotaxime.
The explants were placed on filter paper for drying excess
liquid and were transferred to a callus induction medium
(Schroeder et al., 1993) which consisted of MS macro and
micro (Murashige and Skoog 1962), B5 vitamins (Gamborg
et al. 1968), 2 mg I' of BAP, 2 mg I of NAA, 3% (W)
sucrose supplemented with 0.75% agar, with 50 mg I
kanamycin and 500 mg ' cefotaxime. The pH of the
medium was adjusted to 5.8 before autoclaving. The explants
were incubated in 17h light period, 300 xmol quanta m? s
day/night : temperatures of 24/18C for 12 days. The explants
that remained in medium contain kanamycin were counted.

Then explants were transferred to shoot induction medium
(Schroeder et al 1993) contained MS macro and micro, B5
vitamins, BAP (4.5 mg I'') and NAA (0.02 mg I'"). Medium
was changed at every 20 days. Any shoots produced there
after were excised from the explants and transferred to MS
medium supplemented with B5 vitamins, 3% sucrose, 50 mg I
kanamycin and 500 mg I cefotaxime and BAP (1 mg I, to
enhance shoot elongation. Elongated shoots were removed
from the explants and transferred to B5/2 rooting medium,
with half- strength B5 salts and vitamins, 3% sucrose and
NAA (0.185 mg I") (Polowick et al., 2000).

DNA isolation

Total DNA was isdlated from leaves of non-transgenic
and transgenic plants as described by Dellaporta et al. (1983).

Histochemical assay for gus

The leaves of transgenic pea plants were histochemically
assayed for gus gene expression as described by Jefferson
(1987), that used X-gluc (5- bromo-4- chloro-3- indolyl-

-D-glucuronic acid) as a substrate for the B -glucuronidase
enzyme gene and the indigo blue color of the cells and
tissues were observed.

Polymeras chain reaction (PCR) analysis

To determine the presence of the transferred P5CS gene
in transgenic pea plants, PCR was performed on total
genomic DNA extracted from the non-transgenic and trans-
genic plants with following primers:

5’ - GGATTGATGTGATATCTCCACTGACG-3' (CaMV 35S
promoter specific sense primer) and 5’ -CCTTCAACATCGC
TCAGAAGAATCAG-3’ (P5CS gene specific antisense primer).

RT-PCR

For RT-PCR, RNA was prepared from the leaves of
transgenic and non-transgenic plants. The first strand cDNA
synthesis was performed as follows: a sterile tube that
contained 12 xl total RNA and 1 yl primer (5'- GCAAGAC
TAAGTGGTAAAGTGGATCT-3’) was incubated at 70°C for
5 minutes and chilled on ice, then 4 ul 5X reaction buffer,
2 pl dNTP (10 mM) and 0.5 I ribonuclease inhibitor were
added and incubated at 37°C for 5 minutes; 1 I Reverse
Transcriptase was added to reaction mixture and incubated
at 42°C for 90 min. The reaction was stopped by heating at
70°C for 10 minutes and then chilled on ice. The first strand
cDNA was then employed as. a template DNA in PCR for
the amplification of the P5CS cDNA. The following primers
were used:

Forward primer : 5’ - CCAAGGGCAAGTAAGATACTGAACAT-3'
Reverse primer : 5’ - GCAAGACTAAGTGGTAAAGTGGATCT-3’

The RT-PCR product was separated on a 0.8% agarose

gel.

Dot blot hybridization

pBI P5CS was digested with EcoRV/ Xba1, the resulting
insert was subjected to gel purification and DIG DNA labeling
(Roche Applied Science Gmbh, Germany). Genomic DNA
was extracted from both non-transgenic and transgenic plants.
A volume containing 10 xg of extracted plant DNA was
denatured by NaOH (5 M) and NaCl (1 M) for 30 minutes,
at room temperature. Following denaturation, added 5 I
SSC 20X and rapidly transfer on ice. Then blotted onto nylon
membrane (Roche), baked at 120°C for 30 min, membrane
was hybridized overnight with 10 pmol/ml DIG-labeled probe
in the hybridization solution [5XSSC (saline sodium citrate
buffer: 20X corresponding to 3M NaCl, 0.3 M sodium citrate,
pH 7.0), 0.1% N-lauroylsarcosine, 0.02% SDS, 1% blocking
reagent, Roche]. Following washes at room temperature



236 Salt Tolerance in Transgenic Pea (Pisum sativum L.) Plants by P5CS Gene Transfer

and at 65C bound DIGHabled probes were detected using
DIG luminescent detection kit (Roche) according to the
manufacturer’s instructions.

Southern Blot Hybridization analysis

Genomic DNA from transgenic and non-transgenic pea
plants was isolated using the protocol of Dellaporta et al.
(1983). For southern blots, 20 g of genomic DNA was
digested with Sacl and Bl restriction enzymes, electrophoresed
in 0.8% (w/v) agarose gel, transferred onto Hybond-N*
membranes. The P5CS gene-specific probe was generated
using Xba1 and EcoRV digest of pBI121-P5CS to isolate a
2500 bp fragment. The restriction fragment was purified
using the High Pure PCR Product Purification Kit (Roche
Co.). Hybridization was done as described Sambrook et al.
(1989).

Bioassay for tolerance

Enhanced tolerance to salt stress of transgenic plants in
comparison with non- transgenic plants was assayed by
treating plants with nutrient solution containing 0 (control),
100, 150 and 200 mM of NaCl and plants were grown
under controlled environment, 17 h light periods, 300 zmol
quanta m’s”, day/night: temperatures of 24/18°C. The plants
leaves were harvested after 20 days and analysed for
proline content and photosynthetic rate.

Proline content of leaves

200 mg of fresh leaves of mature plants were powdered
in liquid nitrogen. 10 ml of 3% sulfosalicilic acid was added
to each sample and centrifuged at 1300 rpm for 10 minutes.
2 ml of the supernatants from each sample, 2 ml of acidified
ninhydrin solution (1.25 g ninhydrin in 30 ml acetic acid at
boiling temperature to which 20 ml of ortho phosphoric acid
was added) and 2 ml of 100% acetic acid were mixed and
boiled for one hour. To stop further reaction, samples were
immediately transferred into ice-water and left to cool down

for at least 20 minutes. To each sample, 4 ml of toluene
was added at room temperature, mixed well, and the
absorbance at 520 nm was measured (Bates et al.,, 1973).
To assay the proline content, a standard curve was prepared
by measuring the absorbance at 520 nm of the specified
concentrations of prepared proline.

Leaf gas exchange

Photosynthetic rate was determined in transgenic and
non-transgenic plants under salt stress applying an infrared
gas (CO,) analyser (225 MKS, Analytical Development Co.,,
U.K.) as described by Khavari-Nejad (1980 and 1986).

Statistical analyses
To study the effects of salinity, completely randomized

design with four replications was conducted. The statistical
analysis was performed using SAS software.

Results

Grain legumes have generally been difficult to regenerate
and transform. To harness the potential of biotechnology,
efficient and reliable transformation systems are necessary
(Grant et al, 1995). Of the major grain legume crops-
soybean, chickpeas, peas, cowpea, peanut, common bean,
faba bean and lentils-confirmed transgenic plants have
been produced in all except faba bean, lentils and cowpea
(reviewed by Christou 1994). There are some of reports for
Agrobacterium mediated transformation of peas (Grant et al.
1995; Puonti-Kaerlas et al. 1990; Schroeder et al. 1993).

In this report, we used from embryonic axis of mature
pea seeds as explant. Transformation of explants was done
via Agrobacterium fumefaciens. Also effect of different con-
centraions of Agrobacterium and times of inoculation for
obtaining the best result were investigated. Of the two used
concentrations of Agrobacterium and the four time periods,
the best results for inoculation of explants, were obtained
when they were immersed for 90s in a concentration of 6 <

Table 1. The living explants percent in medium consist of kanamycin (50 mg ") obtained after inoculation of explants in 4 times and

two concentrations of Agrobacterium tumefaciens.

Concentration of Agrobacterium
tumefaciens (Cells, mI™")

Time of inoculation (s)

30

6 x 10° 710 = 2.9° 63.6
+ 048 464

12 x 10° 24.0

60 90 120

6.1%
3.0%

39° 50.0

+ 57 91.0
+ 6.3° 51.3

43° 456

Values are means = SE (n=10)

Numbers followed by the same letter are not significantly different (P>0.05).
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10® cell mI" (OD = 0.5) of bacterial suspension. After trans-
fering explants to selective medium that contained kanamycin
(50 mg 1), the number of explants remained were counted
(Table 1).

Putative pea transformants were screened by using PCR.
Total DNA was extracted from the non-transgenic and trans-
genic pea plants. The forward and reverse primers landed
to the nucleotide sequences of the CaMV 35S promoter and
P5CS cDNA respectively. Of the 25 putative transgenic pea
plants, 5 had a 765 bp size band in the pea genome (In
Figure 2A. result of a sample was shown). The result from
PCR showed that 20% of the plantlets were transformed.

To investigate whether the P5CS gene is expressed in
the transgenic pea plants, RT-PCR was performed. Total
RNA, isolated from 15 transgenic and non-transgenic plants.
RT-PCR analysis showed a 640 bp size band in 4 transgenic
plants, but no band was detected in the non-transgenic
plants (In Figure 2C result of a sample was shown). Further
confirmation for presence and integration of P5CS with
genomic DNA was done by applying dot blots. The probe
for identifying of P5CS was made by applying EcoRV/Xba1
(Figure 2B). Southern-blot analysis was used to investigate

transmission of the P5CS gene in the transgenic plants
(Figure 2D).

To verify whether in transgenic pea plants were modified
amino acid content, the proline content of leaves was mea-
sured in non- transgenic and transgenic plants under non-
slaine and saline conditions (Figures 3A & 3B). In transgenic
plants proline content was significantly increased in respect
of non-transgenic plants. In salinity treatments, in all of NaCl
concentraions proline content of transgenic plants was higher
than that of in non-transgenic plants.

Because among the damages caused by saline stress in
plants, the reduction of the photosynthetic processes is one
of the most important (Delfine et al., 1999), we measured
photosynthetic rate in non-transgenic plants and transgenic
plants in presence of salinity. Salinity treatment significantly
decreased photosynthetic rate in non-transgenic plants in
respect of transgenic plants (Table 2).

Discussion

Enviromental stresses, such as drought, increased soil
salinity, and extreme temperature, are major factors that

Figure 2. (A) Determination of transformation by PCR analysis. Lane1; Molecular size marker gene ruler 50 bp. Lane2; PCR product of
transgenic pea plants. Lane 3; PCR product of non-transgenic pea plants. Lane 4; PCR product of Plasmid pBI-P5CS. Lane 5; PCR
product of control plants (transformants produced with vector pBl without P5CS). (B) Dot-blot hybridization non-transgenic and transgenic
pea plants.(1) pBI-P5CS (Construct S). (2) pBl121. (3) transgenic pea plants.(4) non-transgenic pea plants. (C) RT-PCR analysis showing
the expression of mMRNA, corresponding to PSCS in leaves of transgenic pea plants. Lanes 1 and 6 ; Molecular size marker gene ruler
50 bp. Lane 2; H:0. Lane 3; RT-PCR product derived from transcripts of P5CS control plants . Lane 4; RT-PCR product derived from
transcripts of PSCS in non-transgenic pea plants. Lane 5; RT-PCR product dervied from transcripts of P5CS in transgenic pea plants.
(D) Southern blot analysis of DNA from transgenic and non-transgenic pea plants. Lane1; transgenic pea plants. Lane 2; non-transgenic

pea plants. Lane 3; vector pBI-P5CS.
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Table 2, The effects of NaCl on CO, exchange (xmol CO; m? s7) in non-transgenic, control and transgenic plants.

NaCl (mM) Non-transgenic plants Control plants Transgenic plants

0 52 + 0.71° 51 + 0° 45 + 036%
100 35 + 02° 38 = 016" 4 + 0.15%
150 11 + 0.1° 08 £ 001° 35 + 0.02°
200 0 0 2 + 0.08°

Values are means + SE (n=4)

Numbers followed by the same letter are not significantly different (P>0.05).
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Figure 3. (A) Proline content in leaves of non-transgenic, control and transgenic pea plants before salt-stress conditions. (B) Proline
content in leaves of non-transgenic, control and transgenic plants after salt-stress. Control plants were transformed with Agrobacterium
tumefaciens bearing vector pBI121 without P5CS. Values are mean from four replications. Vertical bars indicate = SE.

limit plant growth and productivity. Recent progress in plant
genetic transformation and the availability of potentially useful
genes characterized from different sources make it possible
to generate stress-tolerant crops using transgenic approaches
(Tarczynski et al. 1993; Pilon-Smits et al. 1995, Xu et al.
1996). Proline is known to play an important role as an
osmoprotectant in plants subjected to hyperosmotic stresses
such as drought and soil salinity (Delauney and Verma 1993).
Kishor overexpressed in tobacco the mothbeam [delta]-pyrroline-
5-carboxylate synthase, a bifunctional enzyme able to catalyze
the conversion of glutamate to [delta]-pyrroline-5-carboxylate,
which is then reduced to proline (Kishor et al. 1995)

In this study we are reporting production of transgenic
pea plants that were salt-tolerant by the overexpressing of
P5CS gene. The effect of cocentration of Agrobacterium
tumefaciens and time period for inoculation stage explants
were investigated. The number of explants remained in 90s
inoculation and 6% 10° cell mI™" Agrobacterium tumefaciens
were significantly more than that of other treatments. There
are some reports for transformation of pea (Kathen and
Jacobsen 1990; Nauerby et al. 1991; Puonti-Kaerlas et al.,
1990; Lulsdorf et al. 1991; Schroeder et al. 1993; Grant et
al. 1995), however, time of inoculation and concentration of
Agrobacterium tumefaciens used in each of them were
different. Our results indicate that two factors time and
concentration of bacteria for inoculation of explants are

important.

As a result of water stress and salinity, proline accumu-
lation was observed in many organisms, inculding bacteria,
fungi, algae, invertebrates and plants (for review see Csonka
and Hanson 1991; Delauney and Verma 1993; Hanson and
Hitz 1982; Yoshiba et al. 1995), so we estimated proline
content in leaves of transgenic and non-transgenic plants
grown 'in the saline and unsaline environment. In the
non-transgenic and transgenic plants with increasing of
concentrations of NaCl proline content was significantly
increased, however, in all of treatments of NaCl, proline
content of transgenic plants was 2.5 times of that of non-
transgenic plants (Figures 3A & 3B).

With increasing concentration of NaCl in culture medium
photosynthetic rate in non-transgenic in comparison with

~transgenic plants was significantly decreased. Besides in

200 mM NaCl, non-transgenic plants died but transgenic
plants remained and indicated high efficiency photosynthesis.

Our results indicated that the P5CS gene can be used to
improve the salt tolerance of plants through gene transfer,
because P5CS increases the production of proline. Proline
protects membranes and proteins against the adverse effects
of high concentrations of inorganic ions and temperature
extremes (Pollard and Wyn Jons 1979; Paleg et al. 1981,
1984; Nash et al. 1982 ; Brady et al. 1984; Gibson et al.
1984; Rudolph et al. 1986; Santarius 1992; Santoro et al.
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1992). Proline may also function as a protein-compatible
hydrotrope (Srinivas and Balasubramanian 1995) and as a
hydroxyl radical scavenger (Smirnoff and Cumbes 1989).
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