DOI QR코드

DOI QR Code

Double Mutations in eIF4E and eIFiso4E Confer Recessive Resistance to Chilli Veinal Mottle Virus in Pepper

  • Hwang, JeeNa (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Li, Jinjie (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Liu, Wing-Yee (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • An, Song-Ji (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Cho, Hwajin (Molecular Markers Diagnostics Laboratory, Plant Breeding and NongWoo Bio Ltd.) ;
  • Her, Nam Han (Plant Pathology Laboratory, NongWoo Bio Ltd.) ;
  • Yeam, Inhwa (Plant Breeding and Genetics, Cornell University) ;
  • Kim, Dosun (National Institute of Horticultural and Herbal Science) ;
  • Kang, Byoung-Cheorl (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2008.10.09
  • Accepted : 2008.12.17
  • Published : 2009.03.31

Abstract

To evaluate the involvement of translation initiation factors eIF4E and eIFiso4E in Chilli veinal mottle virus (ChiVMV) infection in pepper, we conducted a genetic analysis using a segregating population derived from a cross between Capsicum annuum 'Dempsey' containing an elF4E mutation ($pvr1^2$) and C. annuum 'Perennial' containing an elFiso4E mutation (pvr6). C. annuum 'Dempsey' was susceptible and C. annuum 'Perennial' was resistant to ChiVMV. All $F_1$ plants showed resistance, and $F_2$ individuals segregated in a resistant-susceptible ratio of 166:21, indicating that many resistance loci were involved. Seventy-five $F_2$ and 329 $F_3$ plants of 17 families were genotyped with $pvr1^2$ and pvr6 allele-specific markers, and the genotype data were compared with observed resistance to viral infection. All plants containing homozygous genotypes of both $pvr1^2$ and pvr6 were resistant to ChiVMV, demonstrating that simultaneous mutations in elF4E and eIFiso4E confer resistance to ChiVMV in pepper. Genotype analysis of $F_2$ plants revealed that all plants containing homozygous genotypes of both $pvr1^2$ and pvr6 showed resistance to ChiVMV. In protein-protein interaction experiments, ChiVMV viral genome-linked protein (VPg) interacted with both eIF4E and eIFiso4E. Silencing of elF4E and eIFiso4E in the VIGS experiment showed reduction in ChiVMV accumulation. These results demonstrated that ChiVMV can use both eIF4E and eIFiso4E for replication, making simultaneous mutations in eIF4E and eIFiso4E necessary to prevent ChiVMV infection in pepper.

Keywords

Acknowledgement

Supported by : Rural Development Administration, Ministry of Science and Technology

References

  1. Ahlquist, P., Noueiry, A.O., Lee, W.M., Kushner, D.B., and Dye, B.T. (2003). Host factors in positive-strand RNA virus genome replication. J. Virol. 77, 8181-8186 https://doi.org/10.1128/JVI.77.15.8181-8186.2003
  2. Caranta, C., Lefebvre, V., and Palloix, A. (1997). Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol. Plant Microbe Interact. 10, 872-878 https://doi.org/10.1094/MPMI.1997.10.7.872
  3. Charron, C., Nicolai, M., Gallois, J.-L., Robaglia, C., Moury, B., Palloix, A., and Caranta, C. (2008). Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J. 54, 56-68 https://doi.org/10.1111/j.1365-313X.2008.03407.x
  4. Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803-814 https://doi.org/10.1016/j.cell.2006.02.008
  5. Dangl, J.L. and Jones, J.D. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826-833 https://doi.org/10.1038/35081161
  6. Gao, Z., Johansen, E., Eyers, S., Thomas, C.L., Noel Ellis, T.H., and Maule, A.J. (2004). The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 40, 376-385 https://doi.org/10.1111/j.1365-313X.2004.02215.x
  7. Green, S.K., Hiskias, Y., Lesemann, D.E., and Vetten, H.J. (1999). Characterization of Chilli veinal mottle virus as a potyvirus distinct from Pepper veinal mottle virus. Petria 9, 332
  8. Grube, R.C., Radwanski, E.R., and Jahn, M. (2000a). Comparative genetics of disease resistance within the solanaceae. Genetics 155, 873-887
  9. Grube, R.C., Blauth, J.R., Arnedo-A, M.S., Caranta, C., and Jahn, M. (2000b). Identification and comparative mapping of a dominant potyvirus resistance gene cluster in Capsicum. Theor. Appl. Genet. 101, 852-859 https://doi.org/10.1007/s001220051552
  10. Grzela, R., Strokovska, L., Andrieu, J.P., Dublet, B., Zagorski, W.,and Chroboczek, J. (2006). Potyvirus terminal protein VPg, effector of host eukaryotic initiation factor eIF4E. Biochimie 88, 887-896 https://doi.org/10.1016/j.biochi.2006.02.012
  11. Kang, B.C., Yeam, I., and Jahn, M.M. (2005a). Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43, 581-621 https://doi.org/10.1146/annurev.phyto.43.011205.141140
  12. Kang, B.C., Yeam, I., Frantz, J.D., Murphy, J.F., and Jahn, M.M. (2005b). The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J. 42, 392-405 https://doi.org/10.1111/j.1365-313X.2005.02381.x
  13. Kang, B.C., Yeam, I., Li, H., Perez, K.W., and Jahn, M.M. (2007). Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnol. J. 5, 526-536 https://doi.org/10.1111/j.1467-7652.2007.00262.x
  14. Kushner, D.B., Lindenbach, B.D., Grdzelishvili, V.Z., Noueiry, A.O., Paul, S.M., and Ahlquist, P. (2003). Systematic, genome-wide identification of host genes affecting replication of a positivestrand RNA virus. Proc. Natl. Acad. Sci. USA 100, 15764-15769 https://doi.org/10.1073/pnas.2536857100
  15. Kyle, M.M., and Palloix, A. (1997). Proposed revision of nomenclature for potyvirus resistance genes in Capsicum. Euphytica 97, 183-188 https://doi.org/10.1023/A:1003009721989
  16. Liu, Y., Schiff, M., and Dinesh-Kumar, S.P. (2002). Virus-induced gene silencing in tomato. Plant J. 31, 777-786 https://doi.org/10.1046/j.1365-313X.2002.01394.x
  17. Michelmore, R.W., and Meyers, B.C. (1998). Clusters of resistance genes in plants evolve by divergent selection and a birth-anddeath process. Genome Res. 8, 1113-1130 https://doi.org/10.1101/gr.8.11.1113
  18. Moury, B., Palloix, A., Caranta, C., Gognalons, P., Souche, S., Gebre Selassie, K., and Marchoux, G. (2005). Serological, molecular and pathotype diversity of Pepper veinal mottle virus and Chilli veinal mottle virus. Phytopathology 95, 227-232 https://doi.org/10.1094/PHYTO-95-0227
  19. Murphy, J.F., Blauth, J.R., Livingstone, K.D., Lackney, V.K., and Jahn, M. (1998). Genetic mapping of the pvr1 locus in Capsicum spp. and evidence that distinct potyvirus resistance loci control responses that differ at the whole plant and cellular levels. Mol. Plant Microbe Interact. 11, 943-951 https://doi.org/10.1094/MPMI.1998.11.10.943
  20. Nieto, C., Piron, F., Dalmais, M., Marco, C.F., Moriones, E., Gomez-Guillamon, M.L., Truniger, V., Gomez, P., Garcia-Mas, J., Aranda, M.A., et al. (2007). EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol. 7, 34 https://doi.org/10.1186/1471-2229-7-34
  21. Prince, J.P., Zhang, Y., Radwanski, E.R., and Kyle, M.M. (1997). A versatile and high-yielding protocol for the preparation of genomic DNA from Capsicum spp. (pepper). Hort. Sci. 32, 937-939
  22. Robaglia, C., and Caranta, C. (2006). Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 11, 40-45 https://doi.org/10.1016/j.tplants.2005.11.004
  23. Ruffel, S., Gallois, J.L., Moury, B., Robaglia, C., Palloix, A., and Caranta, C. (2006). Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Gen. Virol. 87, 2089-2098 https://doi.org/10.1099/vir.0.81817-0
  24. Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M., and Uyeda, I. (2005). Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Aravidopsis thaliana by potyviruses. FEBS Lett. 579, 1167-1171 https://doi.org/10.1016/j.febslet.2004.12.086
  25. Siriwong, P., Kittipakorn, K., and Ikegami, M. (1995). Characterization of `Chilli veis-banding mottle virus isolated from pepper in Thailand. Plant Path. 44, 718-727 https://doi.org/10.1111/j.1365-3059.1995.tb01696.x
  26. Stein, N., Perovic, D., Kumlehn, J., Pellio, B., Stracke, S., Streng, S., Ordon, F., and Graner, A. (2005). The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J. 42, 912-922 https://doi.org/10.1111/j.1365-313X.2005.02424.x
  27. Tsai, W.S., Huang, Y.C., Zhang, D.Y., Reddy, K., Hidayat, S.H., Srithongchai, W., Green, S.K., and Jan, F.-J. (2008). Molecular characterization of the CP gene and 3′UTR of Chilli veinal mottle virus from South and Southeast Asia. Plant Path. 57, 408-416 https://doi.org/10.1111/j.1365-3059.2007.01780.x
  28. Wang, J., Liu, Z., Niu, S., Peng, M., and Wang, D. (2006). Natural occurrence of Chilli veinal mottle virus on Capsicum chinense in China. Plant Disease 90, 377 https://doi.org/10.1094/PD-90-0377C
  29. Yeam, I., Kang, B.C., Lindeman, W., Frantz, J.D., Faber, N., and Jahn, M.M. (2005). Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum. Theor. Appl. Genet. 112, 178-186 https://doi.org/10.1007/s00122-005-0120-2
  30. Yeam, I., Cavatorta, J.R., Ripoll, D.R., Kang, B.C., and Jahn, M.M. (2007). Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. Plant Cell 19, 2913-2928 https://doi.org/10.1105/tpc.107.050997

Cited by

  1. The Pro/Hel Region Is Indispensable for Packaging Non-Replicating Turnip Yellow Mosaic Virus RNA, but Not Replicating Viral RNA vol.29, pp.5, 2010, https://doi.org/10.1007/s10059-010-0057-4
  2. An Induced Mutation in Tomato eIF4E Leads to Immunity to Two Potyviruses vol.5, pp.6, 2010, https://doi.org/10.1371/journal.pone.0011313
  3. EcoTILLING in Capsicum species: searching for new virus resistances vol.11, pp.None, 2010, https://doi.org/10.1186/1471-2164-11-631
  4. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.) vol.120, pp.8, 2010, https://doi.org/10.1007/s00122-010-1278-9
  5. Direct Interaction Between the Rice yellow mottle virus (RYMV) VPg and the Central Domain of the Rice eIF(iso)4G1 Factor Correlates with Rice Susceptibility and RYMV Virulence vol.23, pp.11, 2009, https://doi.org/10.1094/mpmi-03-10-0073
  6. Turnip mosaic virus (TuMV) Is Able to Use Alleles of Both eIF4E and eIF(iso)4E from Multiple Loci of the Diploid Brassica rapa vol.23, pp.11, 2009, https://doi.org/10.1094/mpmi-05-10-0104
  7. Helper Component Proteinase of the Genus Potyvirus Is an Interaction Partner of Translation Initiation Factors eIF(iso)4E and eIF4E and Contains a 4E Binding Motif vol.85, pp.13, 2009, https://doi.org/10.1128/jvi.00485-11
  8. Structure-Based Mutational Analysis of eIF4E in Relation to sbm1 Resistance to Pea Seed-Borne Mosaic Virus in Pea vol.6, pp.1, 2009, https://doi.org/10.1371/journal.pone.0015873
  9. Knock-Down of Both eIF4E1 and eIF4E2 Genes Confers Broad-Spectrum Resistance against Potyviruses in Tomato vol.6, pp.12, 2009, https://doi.org/10.1371/journal.pone.0029595
  10. RT-PCR Detection of Five Quarantine Plant RNA Viruses Belonging to Potyand Tospoviruses vol.27, pp.3, 2009, https://doi.org/10.5423/ppj.2011.27.3.291
  11. The genome-linked protein VPg of plant viruses—a protein with many partners vol.1, pp.5, 2009, https://doi.org/10.1016/j.coviro.2011.09.010
  12. SNP marker integration and QTL analysis of 12 agronomic and morphological traits in F8 RILs of pepper (Capsicum annuum L.) vol.34, pp.1, 2012, https://doi.org/10.1007/s10059-012-0018-1
  13. Tobacco etch virus Infectivity in Capsicum Spp. Is Determined by a Maximum of Three Amino Acids in the Viral Virulence Determinant VPg vol.25, pp.12, 2009, https://doi.org/10.1094/mpmi-04-12-0091-r
  14. A survey of natural and ethyl methane sulfonate-induced variations of eIF4E using high-resolution melting analysis in Capsicum vol.29, pp.2, 2009, https://doi.org/10.1007/s11032-011-9550-5
  15. The Absence of Eukaryotic Initiation Factor eIF(iso)4E Affects the Systemic Spread of a Tobacco etch virus Isolate in Arabidopsis thaliana vol.26, pp.4, 2009, https://doi.org/10.1094/mpmi-09-12-0225-r
  16. Identification of a broad-spectrum recessive gene in Brassica rapa and molecular analysis of the eIF4E gene family to develop molecular markers vol.32, pp.2, 2009, https://doi.org/10.1007/s11032-013-9878-0
  17. A series of eIF4E alleles at the Bc-3 locus are associated with recessive resistance to Clover yellow vein virus in common bean vol.126, pp.11, 2009, https://doi.org/10.1007/s00122-013-2176-8
  18. Application of genetics and genomics towards Capsicum translational research vol.8, pp.2, 2014, https://doi.org/10.1007/s11816-013-0306-z
  19. Specific requirement for translation initiation factor 4E or its isoform drives plant host susceptibility to Tobacco etch virus vol.14, pp.None, 2009, https://doi.org/10.1186/1471-2229-14-67
  20. A Tobacco etch virus NW isolate that overcomes pvr1 and pvr12 resistance in Capsicum sp. vol.63, pp.3, 2009, https://doi.org/10.1111/ppa.12121
  21. Translation initiation in plants: roles and implications beyond protein synthesis vol.59, pp.3, 2015, https://doi.org/10.1007/s10535-015-0517-y
  22. Plant Translation Factors and Virus Resistance vol.7, pp.7, 2009, https://doi.org/10.3390/v7072778
  23. Fine mapping and identification of candidate genes for the sy-2 locus in a temperature-sensitive chili pepper (Capsicum chinense) vol.129, pp.8, 2009, https://doi.org/10.1007/s00122-016-2723-1
  24. Screening chilli (Capsicum spp.) germplasm against Cucumber mosaic virus and Chilli veinal mottle virus and inheritance of resistance vol.146, pp.3, 2016, https://doi.org/10.1007/s10658-016-0930-x
  25. Development of a high-throughput SNP marker set by transcriptome sequencing to accelerate genetic background selection in Brassica rapa vol.57, pp.3, 2009, https://doi.org/10.1007/s13580-016-1036-2
  26. Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection vol.12, pp.8, 2009, https://doi.org/10.1371/journal.pgen.1006214
  27. RETRACTED ARTICLE: Genetic inheritance and identification of a resistance gene analogue polymorphic (RGAP) marker linked to Chilli veinal mottle virus resistance in chilli (Capsicum annuum L.) vol.91, pp.3, 2016, https://doi.org/10.1080/14620316.2016.1155317
  28. A new eIF4E1 allele characterized by RNAseq data mining is associated with resistance to potato virus Y in tomato albeit with a low durability vol.97, pp.11, 2009, https://doi.org/10.1099/jgv.0.000609
  29. Translation Initiation Factor eIF4E and eIFiso4E Are Both Required for Peanut stripe virus Infection in Peanut ( Arachis hypogaea L.) vol.8, pp.None, 2009, https://doi.org/10.3389/fmicb.2017.00338
  30. Structural and Functional Diversity of Plant Virus 3′-Cap-Independent Translation Enhancers (3′-CITEs) vol.8, pp.None, 2009, https://doi.org/10.3389/fpls.2017.02047
  31. Identification and molecular genetic mapping of Chili veinal mottle virus (ChiVMV) resistance genes in pepper (Capsicum annuum) vol.37, pp.10, 2009, https://doi.org/10.1007/s11032-017-0717-6
  32. Identification of Cucumber mosaic resistance 2 ( cmr2 ) That Confers Resistance to a New Cucumber mosaic virus Isolate P1 (CMV-P1) in Pepper ( Capsicum spp.) vol.9, pp.None, 2009, https://doi.org/10.3389/fpls.2018.01106
  33. Fine Mapping of the Dominant Potyvirus Resistance Gene Pvr7 Reveals a Relationship with Pvr4 in Capsicum annuum vol.108, pp.1, 2009, https://doi.org/10.1094/phyto-07-17-0231-r
  34. Trans‐species synthetic gene design allows resistance pyramiding and broad‐spectrum engineering of virus resistance in plants vol.16, pp.9, 2009, https://doi.org/10.1111/pbi.12896
  35. Genotyping of octoploid strawberry inbred lines by SNP discovery using genotyping-by-sequencing vol.60, pp.1, 2019, https://doi.org/10.1007/s13580-018-0100-5
  36. Resistance to the Emerging Moroccan Watermelon Mosaic Virus in Squash vol.109, pp.5, 2009, https://doi.org/10.1094/phyto-10-18-0395-r
  37. Genome Editing of eIF4E1 in Tomato Confers Resistance to Pepper Mottle Virus vol.11, pp.None, 2009, https://doi.org/10.3389/fpls.2020.01098
  38. Molecular Marker Development and Gene Cloning for Diverse Disease Resistance in Pepper (Capsicum annuum L.): Current Status and Prospects vol.8, pp.2, 2009, https://doi.org/10.9787/pbb.2020.8.2.89
  39. Identification of the determinant of tomato yellow leaf curl Kanchanaburi virus infectivity in tomato vol.291, pp.None, 2009, https://doi.org/10.1016/j.virusres.2020.198192
  40. Genomics and Marker-Assisted Improvement of Vegetable Crops vol.40, pp.4, 2009, https://doi.org/10.1080/07352689.2021.1941605