• Title/Summary/Keyword: $CO_2$ emission reduction

Search Result 630, Processing Time 0.027 seconds

A Study on the Ship's ORC Power System using Seawater Temperature Difference (선박의 해수 온도차를 이용한 ORC 발전 시스템에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC(Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation is performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. The result shows that 1,000kW power generation is available from exhaust gas and 600kW power generation is available from sea water cooling system. Different fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared.

A Study on Estimation Model of Strength Development of Concrete Using Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애시 및 고로슬래그 미분말을 사용한 콘크리트의 강도 발현 예측 모델식 연구)

  • Choi, Yun-Wang;Park, Man-Seok;Jeong, Jae-Gwon;Choi, Byung-Geol;Kim, Kyung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.87-93
    • /
    • 2013
  • Recently, the amount of the mineral admixture including fly ash and ground granulated blast-furnace slag was increased for the purpose of $CO_2$ gas emission reduction in the concrete industry. However, in the case of korea, estimation model of strength development in concrete structural design code was prescribed a constant value according to cement type and curing method about the portland cement. therefore, the properties of strength development according to time of concrete using fly ash and ground granulated blast-furnace slag does not reflected estimation model of strength development. Accordingly, this paper was evaluated strength according to time on the concrete strength range using fly ash and ground granulated blast-furnace Slag and the strength development constant ${\beta}_{sc}$ of concrete according to the kind of the mineral admixture and mixing ratio was proposed.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

Protected Organic Acid Blends as an Alternative to Antibiotics in Finishing Pigs

  • Upadhaya, S.D.;Lee, K.Y.;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1600-1607
    • /
    • 2014
  • A total of 120 finishing pigs ([Yorkshire${\times}$Landrace]${\times}$Duroc) with an average body weight (BW) of $49.72{\pm}1.72kg$ were used in 12-wk trial to evaluate the effects of protected organic acids on growth performance, nutrient digestibility, fecal micro flora, meat quality and fecal gas emission. Pigs were randomly allotted to one of three dietary treatments (10 replication pens with 4 pigs per pen) in a randomly complete block design based on their initial BW. Each dietary treatment consisted of: Control (CON/basal diet), OA1 (basal diet+0.1% organic acids) and OA2 (basal diet+0.2% organic acids). Dietary treatment with protected organic acid blends linearly improved (p<0.001) average daily gain during 0 to 6 week, 6 to 12 week as well as overall with the increase in their inclusion level in the diet. The dry matter, N, and energy digestibility was higher (linear effect, p<0.001) with the increase in the dose of protected organic acid blends during 12 week. During week 6, a decrease (linear effect, p = 0.01) in fecal ammonia contents was observed with the increase in the level of protected organic acid blends on d 3 and d 5 of fermentation. Moreover, acetic acid emission decreased linearly (p = 0.02) on d7 of fermentation with the increase in the level of protected organic acid blends. During 12 weeks, linear decrease (p<0.001) in fecal ammonia on d 3 and d 5 and acetic acid content on d 5 of fermentation was observed with the increase in the level of protected organic acid blends. Supplementation of protected organic acid blends linearly increased the longissimus muscle area with the increasing concentration of organic acids. Moreover, color of meat increased (linear effect, quadratic effect, p<0.001, p<0.002 respectively) and firmness of meat showed quadratic effect (p = 0.003) with the inclusion of increasing level of protected organic acid in the diet. During the 6 week, increment in the level of protected organic acid blends decreased (linear effect, p = 0.01) Escherichia coli (E. coli) counts and increased (linear effect, p = 0.004) Lactobacillus counts. During 12-wk of experimental trial, feces from pigs fed diet supplemented with organic acid blends showed linear reduction (p<0.001) of E. coli counts and the tendency of linear increase (p = 0.06) in Lactobacillus count with the increase in the level of organic acid blends. In conclusion, 0.2% protected organic acids blends positively affected growth performance, nutrient digestibility, fecal gas emission and meat quality in finishing pigs without any adverse effects on blood parameters.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Estimation of Food Miles and CO2 Emissions of Imported Food (수입 음식료품의 푸드 마일리지 및 이산화탄소 배출량 산정)

  • Ju, Ok-Jung;Lee, Jae-Bum;Seong, Mi-Ae;Kim, Su-Yeon;Ryu, Ji-Yeon;Kim, Dai-Gon;Hong, Yoo-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.57-68
    • /
    • 2010
  • Increase in greenhouse gas emissions during the last century has led to remarkable changes in our environment and climate system. Many policy measures have been developed to reduce greenhouse gas emissions across the world, many of which require our lifestyle changes from energy-intensive to energy-saving. One of the changes in our living patterns is to consider food miles. A food mile is the distance food travels from where it is produced to where it is consumed. Providing information of food miles will help people choose low mileage food, helping promote a "green consumption" action and lead to a low carbon society with emission reduction systems. In this study, 10 items are selected from 23 Harmonized commodity description and 2-digit coding system (HS) to estimate their food miles, and $CO_2$ emissions released in the transportation of imported food. For the estimation, four countries are chosen-Korea, Japan, United Kingdom (UK) and France, with Korea and Japan's 2001, 2003, and 2007 trade statistics and UK and France's 2003 and 2007 trade statistics used. As a result, Korea showed in 2007 the highest level of food miles and $CO_2$ emissions per capita among 4 countries. That suggests that Korea should make an effort to purchase local food to reduce food miles and use low-carbon vehicles for food transport, contributing to reducing greenhouse gas emissions.

Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals (이산화탄소를 활용한 고부가화합물 제조기술의 경제성 평가연구)

  • Lee, Ji Hyun;Lee, Dong Woog;Gyu, Jang Se;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Choi, Jong Shin;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.347-354
    • /
    • 2014
  • Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this $CO_2$ carbonation technology is an cost-effective technology option for the reduction of greenhouse gas.

An Analysis of Interfuel Substitution of Energy Demand in Korean Manufacturing (한국 제조업부문의 연료용 에너지원간의 대체성 분석)

  • Park, Changsuh;Na, In-Gang
    • Environmental and Resource Economics Review
    • /
    • v.13 no.4
    • /
    • pp.593-619
    • /
    • 2004
  • This study analyzes the interfuel substitution of energy demand in Korean manufacturing sector using static and dynamic linear logit models. For the period of 1981~2002, this study uses petroleum, electricity, natural gas and coal as energy sources. According to the empirical results, firstly, the own-price elasticity of coal has been increased steadily even though its elasticity is smallest compared with those of other energy sources. On the other hand, price elasticity of natural gas is largest, but its value has been decreased after 1997. Price elasticities of petroleum and electricity are very stable over the sample period. One of the main features in trends of interfuel substitution is as follows. Substitution effect of a change in price of natural gas on both petroleum and coal has been increased especially after 1997. The implication of the empirical results is summarized as follows: First, the fact of inelastic own-price elasticity of petroleum implies that the dependency of Korean manufacturing sector on petroleum and coal will be persistent even in a sharp fluctuation of petroleum price. Second, the effects of price increase in natural gas on demand for petroleum and coal are very significant. Thus, price decline of natural gas rather than price declines of coal and petroleum could be more effective as an energy price policy for the reduction of $CO_2$ emission. The assessment on this implication will remain for future researches.

  • PDF

Development of a Fuel-Efficient Driving Method based on Slope and Length of Uphill Freeway Section (고속도로 오르막 구간의 경사도와 길이에 따른 연료 효율적 주행방법 개발)

  • Choi, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.77-84
    • /
    • 2015
  • In 2011, greenhouse gas emissions of transport sector were 85.04 million $tonCO_2eq$ and road emissions accounted for 95% of total emissions in the transport sector. There are few innovative technologies to reduce greenhouse gas emissions aside from eco-driving education and public relation program. Therefore, this paper focused on analyzing optimal acceleration by certain road grades and suggested fuel-efficient driving method for various uphill sections. Scenarios were established by driving modes. Speed profiles were generated by scenarios and speed variations. Each speed profile applied to Comprehensive Modal Emission Model and then each fuel consumption was estimated. Driving mode and speed variation that minimized fuel consumption were driven according to grade percent and uphill distance. When driving in the eco-friendly mode of the driving and speed variation, reduction rate of fuel consumption was evaluated by comparison between eco-driving and cruise control mode. When a vehicle drove under eco-driving mode at 100kph, 90kph and 80kph on uphill road, fuel consumptions were reduced by 33.9%, 30.8% and 5.3%, respectively.

Utilization of Upgraded Solid Fuel Made by the Torrefaction of Indonesian Biomass (인도네시아 바이오매스 반탄화를 통해 제조된 고품위 고형연료의 활용)

  • Yoo, Jiho
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.239-250
    • /
    • 2020
  • Biomass is an abundant renewable energy resource that can replace fossil fuels for the reduction of greenhouse gas (GHG). Indonesia has a large number of cheap biomass feedstocks, such as reforestation (waste wood) and palm residues (empty fruit bunch or EFB). In general, raw biomass contains more than 20% moisture and lacks calorific value, energy density, grindability, and combustion efficiency. Those properties are not acceptable fuel attributes as the conditions currently stand. Recently, torrefaction facilities, especially in European countries, have been built to upgrade raw biomass to solid fuel with high quality. In Korea, there is no significant market for torrefied solid fuel (co-firing) made of biomass residues, and only the wood pellet market presently thrives (~ 2 million ton yr-1). However, increasing demand for an upgraded solid fuel exists. In Indonesia, torrefied woody residues as co-firing fuel are economically feasible under the governmental promotion of renewable energy such as in feed-in-tariff (FIT). EFB, one of the chief palm residues, could replace coal in cement kiln when the emission trading system (ETS) and clean development mechanism (CDM) system are implemented. However, technical issues such as slagging (alkali metal) and corrosion (chlorine) should be addressed to utilize torrefied EFB at a pulverized coal boiler.