• Title/Summary/Keyword: $CO_2$ 양생

Search Result 92, Processing Time 0.023 seconds

Fundamental Properties of Alumina Cement Mortar by Insulation Curing Method under Low Temperature (저온환경에서 알루미나시멘트를 사용한 모르타르의 단열양생에 따른 기초물성 평가)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.419-427
    • /
    • 2017
  • In order to examine the possibility of practical use of aluminate cement concrete at low-temperature environment with insulation method, an experimental studies on flowability, setting time, freezing temperature, size variation and compressive strength of the mortar at low-temperature were conducted. Compressive strength was increased in use of CSA, aluminate cement with gypsum. Workability and physical properties were improved by using aluminate cement and gypsum. In addition, freezing resistance and physical properties were improved by applying the insulation curing method. Especially, when alumina cement and gypsum were used together, the insulation curing method was more effective in improving the compressive strength.

Effect of Carbonation Curing on the Hydration Properties of Circulating Fluidized Bed Boiler Ash (탄산화 양생이 순환유동층 보일러 애시의 수화특성에 미치는 영향)

  • Soo-Won Cha;Shi-Eun Lee;Won-Jun Lee;Young-Cheol Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • In this study, the hydration and carbonation properties of circulating fluidized bed boiler (CFBC) ash with different free-CaO contents were investigated. In addition, the possibility of utilizing CFBC ash with a high free-CaO content as a cementitious material was investigated by carbonation curing as a pretreatment. The CFBC ash with high free-CaO content exhibited rapid setting behavior and low early compressive strength when mixed with cement. For CFBC ash with high free-CaO content, carbon dioxide capture increased with the duration of carbonization curing. In addition, the free-CaO value decreased together, indicating that the free-CaO reacted with carbon dioxide. When the CFBC ash with high free-CaO content was pretreated by carbonation, no fresh set appeared, and the initial compressive strength was improved. From the results of this study, it is confirmed that CFBC ash with high free-CaO content has a high potential to be utilized as a cementitious material through proper carbonation curing.

Evaluation on Uniaxial Compression Strength of SSG Method with Curing Condition (양생조건에 따른 SSG공법의 일축압축강도 평가)

  • Choi, Yong-Sung;Kim, Byoung-Il;Moon, In-Jong;Heo, Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.15-20
    • /
    • 2016
  • The grouting method, which can be used to effectively improve small areas within a short amount of time, may have different injection effects depending on the ground conditions and the levels of a water table. In particular, for ground with a relatively large permeability, the strength of the ground and the water proof ability can decrease over time due to the leaching process. To solve this problem, a "self-healing smart grouting (SSG) method", which was designed to maintain the initial strength of the ground by minimizing the leaching process, was developed recently. In this study, uniaxial compression tests were carried out on SSG samples to understand the strength of SSG over curing time where two different curing temperatures have been applied for comparison. The uniaxial compression strength of SSG was further compared with the samples prepared using conventional methods (LW and SGR). The test results showed that the uniaxial compression strength of SSG was higher at both high and low curing temperatures compared to that of the samples prepared using conventional methods. The initial strength of SSG was also relatively higher.

A Review Study on the Application of γ-C2S (γ-C2S 활용에 관한 문헌적 연구)

  • Chen, zheng-xin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.118-119
    • /
    • 2016
  • γ-C2S is known as a kind of substance that it does not react with water at room temperature. However it could react with the CO2 producing CaCO3 and silica gel as the carbonation products. Thus γ-C2S can be used as a mineral addition to improve the compressive strength and durability of concrete. On the other hand, the manufacture of γ-C2S can give an effective utilization of industrial by-product with low energy consumption and low CO2 emission. This paper aims to summarize the development situation on this field.

  • PDF

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.

Carbon-capture Performance of foam Concrete Using Stainless Steel Slag (스테인리스 스틸 AOD 슬래그를 이용한 폼 콘크리트의 탄소포집 성능)

  • Kim, Byung Jun;Yoo, Sung Won;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.18-25
    • /
    • 2020
  • The purpose of this study is to investigate the mechanical and carbon-capture properties of foam concrete containing stainless steel argon oxygen decarbonization(AOD) slag. AOD slag was used as a binder, and foam concrete having a foaming ratio of 69 ± 0.5 % and a slurry density of 573.2 to 578.6 kg / ㎥ was produced. In order to examine the effect of carbonation, blended specimen was cured by two types : normal curing and CO2 curing. As a result of the experiment, the specimens incorporating AOD slag showed higher compressive strength than Plain after CO2 curing. According to the analysis of the image of foam concrete, it was confirmed that the ST30 has a lower total pore volume and average pore size than plain, resulting in high compressive strength. The SEM analysis confirmed the formation of calcite by carbonation of AOD slag. Through the thermogravimetric analysis, the increase of CO2 uptake was confirmed by the incorporation of AOD slag. Foam concrete has a higher porosity than normal concrete, so it is expected that carbon-capture performance can be improved by using a AOD slag.

The study on annual evaluation of CO2 and general economic for precast concrete without steam curing (증기양생이 불필요한 프리캐스트 콘크리트의 연간 CO2 저감량 및 경제성 평가)

  • Sung, Myung Jin;Min, Tae-Beom;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.42-43
    • /
    • 2013
  • Nowadays, Precast Concrete is adopted on most of construction, because of shortening construction period and good quality. In precast concrete, steam curing is necessary for getting proper strength, but it causes much CO2 and economc. Therefore, on this study, by using type III cement and hardening accelerator, early compressive strength was shown 13MPa for 6hr. From the result, removal form could be shorten. Furthermore, annual CO2 was reduced as much as 24% and also annual cost was decreased as much as 12%.

  • PDF

An experimental study on carbonation and compressive strength of cementitious materials containing CO2 reactive materials (CO2 반응물질을 혼입한 시멘트계 재료의 탄산화 진행 및 압축강도 발현에 관한 실험적 연구)

  • Seong, Myung-Jin;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.30-31
    • /
    • 2015
  • Usually, carbonation of concrete causes pH reduction and corrosion of steel, it leads to decrease of durability. However, CaCO3, as results of reaction with hydrates products and CO2, can contribute to improvement of compressive strength. Based on this theory, using carbonation depth, the researches about CO2 absorption of plain concrete and concrete containing CO2 reactive materials has been performed. But, the researches has limitation about using one material, therefore, for this study, considering various CO2 reactive materials, experiment has been proceeded. With water to binder ratio 50%, after initial curing for 2days, accelerated carbonation was performed for 28days, and carbonation depth and compressive strength were measured. As results of carbonation depth, specimen containing desulfurized slag, zeolite showed the highest CO2 absorption, in case of compressive strength, specimens with MgO were indicated as highest compressive strength.

  • PDF

Influence of Alkali Activator Type and Amount of Addition on CO2 Uptake of GGBFS Geopolymer Pastes Containing Zeolite (알칼리계 활성화제의 종류 및 첨가량이 고로슬래그-제올라이트 지오폴리머 페이스트의 탄소포집에 미치는 영향에 관한 연구)

  • Jang-Hyun Park;Hyo-Min Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.112-119
    • /
    • 2023
  • In this study, the variations in CO2 uptake according to the type and amount of alkali-based activator (Ca(OH)2, CSA) of geopolymer paste were evaluated. As the amount of activator added to the geopolymer paste increased, the fluidity of the paste is decreased and the compressive strength increased. According to the type of activator, it was confirmed that the addition of Ca(OH)2 had a greater effect on improving the compressive strength than CSA. As a result of changes in chemical properties according to carbonation curing, the amount of C-S-H and C-A-S-H gels produced before carbonation increased as the amount of activator increased, and amount of CaCO3 produced after carbonation increased. The reactivity of the blast furnace slag and zeolite increased due to the addition of the activator, and the reactivity tended to increase as the amount of addition increased. As a result of CO2 uptake, 10.3 wt% when Ca(OH)2 10 % was added and 8.77 wt% when CSA 10 % was added was confirmed. It increased by 421 % and 388 % respectively, compared to the case where no activator was added.

Evaluation of the Flowability and Compressive Strength of Alkali-Activated Blast Slag Mortar (고로슬래그 알칼리 활성 모르타르의 유동성 및 압축강도 평가)

  • Ryu, Gum-Sung;Kang, Hyun-Jin;Koh, Kyung-Taek;Lee, Jang-Hwa;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.613-616
    • /
    • 2008
  • Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the source of material such as fly ash and blast slag, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of CO$_2$ gas. In this study, we investigated the influence of the workability and compressive strength of mortar on water reducing agent, alkaline activator and curing method in oder to develop cementless blast slag based alkali-activated mortar. In view of the results, we found out that the flowability of mortar was lowered as increasing to mole concentration of NaOH, but not large the loss of flowability to 9M NaOH, most of water reducing agent was not effect. The compressive strength was improved as increasing to mole concentration of NaOH, was the most effect in 9M NaOH. The curing temperature and curing conditions on compressive strength of blast slag based alkali-activated mortar didn't influence.

  • PDF